MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A categorical approach to the stable center conjecture

Author(s)
Kazhdan, David; Bezrukavnikov, Roman; Varshavsky, Yaakov
Thumbnail
Download1307.4669v4.pdf (778.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let G be a connected reductive group over a local non-archimedean field F. The stable center conjecture provides an intrinsic decomposition of the set of equivalence classes of smooth irreducible representations of G(F), which is only slightly coarser than the conjectural decomposition into L-packets. In this work we propose a way to verify this conjecture for depth zero representations. As an illustration of our method, we show that the Bernstein projector to the depth zero spectrum is stable.
Date issued
2015
URI
http://hdl.handle.net/1721.1/116254
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Astérisque
Publisher
Société mathématique de France
Citation
Bezrukavnikov, Roman, David Kazhdan, and Yakov Varshavsky. "A Categorial Approach to the Stable Center Conjecture." Astérisque, 369, 2015, pp. 27-97.
Version: Original manuscript
ISSN
0303-1179

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.