dc.contributor.author | Bezrukavnikov, Roman | |
dc.contributor.author | Finkelberg, Michael | |
dc.contributor.author | Vologodsky, Vadim | |
dc.date.accessioned | 2018-06-12T15:25:56Z | |
dc.date.available | 2018-06-12T15:25:56Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2168-0930 | |
dc.identifier.issn | 2168-0949 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116258 | |
dc.description.abstract | Mark Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product Sn[subscript ⋉](Z/rZ)[superscript n]. He has proven the original conjecture by establishing the geometric statement about the Hilbert scheme, as a byproduct he obtained a derived equivalence between coherent sheaves on the Hilbert scheme and coherent sheaves on the orbifold quotient of A[superscript 2n] by the symmetric group Sn.
A short proof of a similar derived equivalence for any symplectic quotient singularity has been obtained by the first author and Kaledin [2] via quantization in positive characteristic. In the present note we prove various properties of these derived equivalences and then deduce generalized Macdonald positivity for wreath products. | en_US |
dc.publisher | International Press of Boston | en_US |
dc.relation.isversionof | http://dx.doi.org/10.4310/CJM.2014.V2.N2.A1 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Wreath Macdonald polynomials and the categorical McKay correspondence | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bezrukavnikov, Roman et al. “Wreath Macdonald Polynomials and the Categorical McKay Correspondence.” Cambridge Journal of Mathematics 2, 2 (2014): 163–190 © 2018 International Press of Boston | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Bezrukavnikov, Roman | |
dc.relation.journal | Cambridge Journal of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-05-16T19:00:34Z | |
dspace.orderedauthors | Bezrukavnikov, Roman; Finkelberg, Michael; Vologodsky, Vadim | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5902-8989 | |
mit.license | OPEN_ACCESS_POLICY | en_US |