Show simple item record

dc.contributor.authorBezrukavnikov, Roman
dc.contributor.authorFinkelberg, Michael
dc.contributor.authorVologodsky, Vadim
dc.date.accessioned2018-06-12T15:25:56Z
dc.date.available2018-06-12T15:25:56Z
dc.date.issued2014
dc.identifier.issn2168-0930
dc.identifier.issn2168-0949
dc.identifier.urihttp://hdl.handle.net/1721.1/116258
dc.description.abstractMark Haiman has reduced Macdonald Positivity Conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product Sn[subscript ⋉](Z/rZ)[superscript n]. He has proven the original conjecture by establishing the geometric statement about the Hilbert scheme, as a byproduct he obtained a derived equivalence between coherent sheaves on the Hilbert scheme and coherent sheaves on the orbifold quotient of A[superscript 2n] by the symmetric group Sn. A short proof of a similar derived equivalence for any symplectic quotient singularity has been obtained by the first author and Kaledin [2] via quantization in positive characteristic. In the present note we prove various properties of these derived equivalences and then deduce generalized Macdonald positivity for wreath products.en_US
dc.publisherInternational Press of Bostonen_US
dc.relation.isversionofhttp://dx.doi.org/10.4310/CJM.2014.V2.N2.A1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleWreath Macdonald polynomials and the categorical McKay correspondenceen_US
dc.typeArticleen_US
dc.identifier.citationBezrukavnikov, Roman et al. “Wreath Macdonald Polynomials and the Categorical McKay Correspondence.” Cambridge Journal of Mathematics 2, 2 (2014): 163–190 © 2018 International Press of Bostonen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBezrukavnikov, Roman
dc.relation.journalCambridge Journal of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-16T19:00:34Z
dspace.orderedauthorsBezrukavnikov, Roman; Finkelberg, Michael; Vologodsky, Vadimen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5902-8989
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record