dc.contributor.author | Fraternale, Federico | |
dc.contributor.author | Domenicale, Loris | |
dc.contributor.author | Staffilani, Gigliola | |
dc.contributor.author | Tordella, Daniela | |
dc.date.accessioned | 2018-06-12T15:55:38Z | |
dc.date.available | 2018-06-12T15:55:38Z | |
dc.date.issued | 2018-06 | |
dc.date.submitted | 2018-04 | |
dc.identifier.issn | 2470-0045 | |
dc.identifier.issn | 2470-0053 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116263 | |
dc.description.abstract | This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge's procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech. 2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number–Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties. | en_US |
dc.publisher | American Physical Society | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevE.97.063102 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Physical Society | en_US |
dc.title | Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Fraternale, Federico et al. "Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space." Physical Review E 97, 6 (June 2018): 063102 © 2018 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Staffilani, Gigliola | |
dc.relation.journal | Physical Review E | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-06-08T18:00:23Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | American Physical Society | |
dspace.orderedauthors | Fraternale, Federico; Domenicale, Loris; Staffilani, Gigliola; Tordella, Daniela | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-8220-4466 | |
mit.license | PUBLISHER_POLICY | en_US |