Show simple item record

dc.contributor.authorSzucs, Matthew J
dc.contributor.authorAmmendolia, Dustin A
dc.contributor.authorMacMullan, Melanie A
dc.contributor.authorRakoff-Nahoum, Seth
dc.contributor.authorMead, Benjamin Elliott
dc.contributor.authorOrdovas-Montanes, Jose Manuel
dc.contributor.authorBraun, Alexandra Provost
dc.contributor.authorLevy, Lauren
dc.contributor.authorSaluja, Prerna Bhargava
dc.contributor.authorYin, Xiaolei
dc.contributor.authorHughes, Travis K.
dc.contributor.authorWadsworth, Marc Havens
dc.contributor.authorAhmad, Rushdy
dc.contributor.authorCarr, Steven A
dc.contributor.authorLanger, Robert S
dc.contributor.authorCollins, James J.
dc.contributor.authorShalek, Alexander K
dc.contributor.authorKarp, Jeffrey Michael
dc.date.accessioned2018-06-12T19:08:18Z
dc.date.available2018-06-12T19:08:18Z
dc.date.issued2018-06
dc.date.submitted2018-03
dc.identifier.issn1741-7007
dc.identifier.urihttp://hdl.handle.net/1721.1/116280
dc.description.abstractBackground Single-cell genomic methods now provide unprecedented resolution for characterizing the component cell types and states of tissues such as the epithelial subsets of the gastrointestinal tract. Nevertheless, functional studies of these subsets at scale require faithful in vitro models of identified in vivo biology. While intestinal organoids have been invaluable in providing mechanistic insights in vitro, the extent to which organoid-derived cell types recapitulate their in vivo counterparts remains formally untested, with no systematic approach for improving model fidelity. Results Here, we present a generally applicable framework that utilizes massively parallel single-cell RNA-seq to compare cell types and states found in vivo to those of in vitro models such as organoids. Furthermore, we leverage identified discrepancies to improve model fidelity. Using the Paneth cell (PC), which supports the stem cell niche and produces the largest diversity of antimicrobials in the small intestine, as an exemplar, we uncover fundamental gene expression differences in lineage-defining genes between in vivo PCs and those of the current in vitro organoid model. With this information, we nominate a molecular intervention to rationally improve the physiological fidelity of our in vitro PCs. We then perform transcriptomic, cytometric, morphologic and proteomic characterization, and demonstrate functional (antimicrobial activity, niche support) improvements in PC physiology. Conclusions Our systematic approach provides a simple workflow for identifying the limitations of in vitro models and enhancing their physiological fidelity. Using adult stem cell-derived PCs within intestinal organoids as a model system, we successfully benchmark organoid representation, relative to that in vivo, of a specialized cell type and use this comparison to generate a functionally improved in vitro PC population. We predict that the generation of rationally improved cellular models will facilitate mechanistic exploration of specific disease-associated genes in their respective cell types. Keywords: Single-cell RNA-seq; Chemical biology; Stem cell-derived models; Paneth cell; Intestinal organoid; Intestinal stem cell; Differentiation; Systems biologyen_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant P30-CA14051)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DE013023)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant HL095722)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1DP2OD020839)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 2U19AI089992)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 2R01HL095791)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1U54CA217377)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 2P01AI039671)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 5U24AI118672)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 2RM1HG006193)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R33CA202820)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01HL126554)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01DA046277)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1R01AI138546)en_US
dc.description.sponsorshipBill & Melinda Gates Foundation (Grant OPP1139972)en_US
dc.description.sponsorshipBill & Melinda Gates Foundation (Grant OPP1137006)en_US
dc.description.sponsorshipBill & Melinda Gates Foundation (Grant OPP1116944)en_US
dc.publisherBiomed Central Ltden_US
dc.relation.isversionofhttps://doi.org/10.1186/s12915-018-0527-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleHarnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell typesen_US
dc.typeArticleen_US
dc.identifier.citationMead, Benjamin E. et al. "Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types." BMC Biology 16 (June 2018): 62 © 2018 Karp et alen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Microbiome Informatics and Therapeuticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorMead, Benjamin Elliott
dc.contributor.mitauthorOrdovas-Montanes, Jose Manuel
dc.contributor.mitauthorBraun, Alexandra Provost
dc.contributor.mitauthorLevy, Lauren
dc.contributor.mitauthorSaluja, Prerna Bhargava
dc.contributor.mitauthorYin, Xiaolei
dc.contributor.mitauthorHughes, Travis K.
dc.contributor.mitauthorWadsworth, Marc Havens
dc.contributor.mitauthorAhmad, Rushdy
dc.contributor.mitauthorCarr, Steven A
dc.contributor.mitauthorLanger, Robert S
dc.contributor.mitauthorCollins, James J.
dc.contributor.mitauthorShalek, Alexander K
dc.contributor.mitauthorKarp, Jeffrey
dc.relation.journalBMC Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-10T03:39:18Z
dc.language.rfc3066en
dc.rights.holderKarp et al.
dspace.orderedauthorsMead, Benjamin E.; Ordovas-Montanes, Jose; Braun, Alexandra P.; Levy, Lauren E.; Bhargava, Prerna; Szucs, Matthew J.; Ammendolia, Dustin A.; MacMullan, Melanie A.; Yin, Xiaolei; Hughes, Travis K.; Wadsworth, Marc H.; Ahmad, Rushdy; Rakoff-Nahoum, Seth; Carr, Steven A.; Langer, Robert; Collins, James J.; Shalek, Alex K.; Karp, Jeffrey M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7258-7777
dc.identifier.orcidhttps://orcid.org/0000-0002-7941-2336
dc.identifier.orcidhttps://orcid.org/0000-0001-8624-8928
dc.identifier.orcidhttps://orcid.org/0000-0001-8291-8672
dc.identifier.orcidhttps://orcid.org/0000-0001-9376-164X
dc.identifier.orcidhttps://orcid.org/0000-0002-7203-4299
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dc.identifier.orcidhttps://orcid.org/0000-0002-5560-8246
dc.identifier.orcidhttps://orcid.org/0000-0001-5670-8778
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record