MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform

Author(s)
Taylor, Sara Ann; Sano, Akane; Ferguson, Craig; Mohan, Akshay; Picard, Rosalind W.
Thumbnail
Downloadsensors-18-01097.pdf (1.267Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Smartphones and wearable sensors have enabled unprecedented data collection, with many products now providing feedback to users about recommended step counts or sleep durations. However, these recommendations do not provide personalized insights that have been shown to be best suited for a specific individual. A scientific way to find individualized recommendations and causal links is to conduct experi ments using single-case experimental design; however, properly designed single-case experiments are not easy to conduct on oneself. We designed, developed, and evaluated a novel platform, QuantifyMe, for novice self-experimenters to conduct proper-methodology single-case self-experiments in an automated and scientific manner using their smartphones. We provide software for the platform that we used (available for free on GitHub), which provides the methodological elements to run many kinds of customized studies. In this work, we evaluate its use with four different kinds of personalized investigations, examining how variables such as sleep duration and regularity, activity, and leisure time affect personal happiness, stress, productivity, and sleep efficiency. We conducted a six-week pilot study (N = 13) to evaluate QuantifyMe. We describe the lessons learned developing the platform and recommendations for its improvement, as well as its potential for enabling personalized insights to be scientifically evaluated in many individuals, reducing the high administrative cost for advancing human health and wellbeing. Keywords: single-case experimental design; mobile health; wearable sensors; self-experiment; self-tracking
Date issued
2018-04
URI
http://hdl.handle.net/1721.1/116285
Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Sensors
Publisher
MDPI AG
Citation
Taylor, Sara et al. “QuantifyMe: An Open-Source Automated Single-Case Experimental Design Platform.” Sensors 18, 4 (April 2018): 1097 © 2018 The Author(s)
Version: Final published version
ISSN
1424-8220

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.