Show simple item record

dc.contributor.authorLin, Junhong
dc.contributor.authorZhou, Ding-Xuan
dc.contributor.authorRosasco, Lorenzo
dc.date.accessioned2018-06-14T13:35:21Z
dc.date.available2018-06-14T13:35:21Z
dc.date.issued2016-05
dc.date.submitted2015-03
dc.identifier.issn1532-4435
dc.identifier.issn1533-7928
dc.identifier.urihttp://hdl.handle.net/1721.1/116303
dc.description.abstractWe consider the problem of supervised learning with convex loss functions and propose a new form of iterative regularization based on the subgradient method. Unlike other regularization approaches, in iterative regularization no constraint or penalization is considered, and generalization is achieved by (early) stopping an empirical iteration. We consider a nonparametric setting, in the framework of reproducing kernel Hilbert spaces, and prove consistency and finite sample bounds on the excess risk under general regularity conditions. Our study provides a new class of efficient regularized learning algorithms and gives insights on the interplay between statistics and optimization in machine learning.en_US
dc.description.sponsorshipItalian Ministry of Education, Universities and Research (RBFR12M3AC)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (McGovern Institute for Brain Research at MIT. Center for Brains, Minds, and Machines. STC Award CCF-1231216)en_US
dc.description.sponsorshipResearch Grants Council (Hong Kong, China) (Project CityU 104012)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant 11461161006)en_US
dc.publisherJMLR, Inc.en_US
dc.relation.isversionofhttp://www.jmlr.org/papers/volume17/15-115/15-115.pdfen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceJournal of Machine Learning Researchen_US
dc.titleIterative regularization for learning with convex loss functionsen_US
dc.typeArticleen_US
dc.identifier.citationLin, Junhong, Lorenzo Rosasaco, and Ding-Xuan Zhou. "Iterative Regularization for Learning with Convex Loss Functions." Journal of Machine Learning Research 17, 2016, pp. 1-38. © 2016 Junhong Lin, Lorenzo Rosasco and Ding-Xuan Zhouen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorRosasco, Lorenzo
dc.relation.journalJournal of Machine Learning Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-23T15:43:40Z
dspace.orderedauthorsLin, Junhong; Rosasco, Lorenzo; Zhou, Ding-Xuanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6376-4786
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record