Show simple item record

dc.contributor.authorAllaire, D.
dc.contributor.authorKordonowy, D.
dc.contributor.authorLecerf, Marc A.
dc.contributor.authorMainini, Laura
dc.contributor.authorWillcox, Karen E
dc.date.accessioned2018-06-14T18:37:09Z
dc.date.available2018-06-14T18:37:09Z
dc.date.issued2014
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/1721.1/116320
dc.description.abstractA self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. We consider the specific challenge of an unmanned aerial vehicle that can dynamically and autonomously sense its structural state and re-plan its mission according to its estimated current structural health. The challenge is to achieve each of these tasks in real time-executing online models and exploiting dynamic data streams-while also accounting for uncertainty. Our approach combines information from physics-based models, simulated offline to build a scenario library, together with dynamic sensor data in order to estimate current flight capability. Our physics-based models analyze the system at both the local panel level and the global vehicle level.en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (Grant FA9550-11-1-0339)en_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.PROCS.2014.05.106en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceElsevieren_US
dc.titleMultifidelity DDDAS Methods with Application to a Self-aware Aerospace Vehicleen_US
dc.typeArticleen_US
dc.identifier.citationAllaire, D., et al. “Multifidelity DDDAS Methods with Application to a Self-Aware Aerospace Vehicle.” Procedia Computer Science, vol. 29, 2014, pp. 1182–92. © The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorLecerf, Marc A.
dc.contributor.mitauthorMainini, Laura
dc.contributor.mitauthorWillcox, Karen E
dc.relation.journalProcedia Computer Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-17T17:39:19Z
dspace.orderedauthorsAllaire, D.; Kordonowy, D.; Lecerf, M.; Mainini, L.; Willcox, K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5969-9069
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record