Show simple item record

dc.contributor.authorKalidindi, Arvind Rama
dc.contributor.authorSchuh, Christopher A
dc.date.accessioned2018-06-18T18:30:38Z
dc.date.available2018-06-18T18:30:38Z
dc.date.issued2017-06
dc.date.submitted2017-02
dc.identifier.issn0884-2914
dc.identifier.issn2044-5326
dc.identifier.urihttp://hdl.handle.net/1721.1/116375
dc.description.abstractGrain boundary segregation can reduce the driving force for grain growth in nanocrystalline materials and help retain fine grain sizes. However, grain boundary segregation is enthalpically driven, and so a stabilized nanocrystalline state should undergo a disordering process as temperature is increased. Here we develop a Monte Carlo-based simulation that determines the minimum free energy state of an alloy with a strong tendency for grain boundary segregation that considers both different grain sizes and a large solute configuration space. We find that a stable nanocrystalline alloy undergoes a disordering process where grain boundary segregated atoms dissolve into the adjacent grains and increase the grain size as a function of temperature. At a critical temperature, the single crystal state becomes the most preferred. Using this method, we are able to determine how the grain size changes as a function of temperature and produce equilibrium phase diagrams for nanocrystalline alloys.en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-14-1-0539)en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1557/jmr.2017.188en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Schuh via Erja Kajosaloen_US
dc.titlePhase transitions in stable nanocrystalline alloysen_US
dc.typeArticleen_US
dc.identifier.citationKalidindi, Arvind R. and Christopher A. Schuh. “Phase Transitions in Stable Nanocrystalline Alloys.” Journal of Materials Research 32, 11 (May 2017): 1993–2002 © 2017 Materials Research Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverSchuh, Christopher A.en_US
dc.contributor.mitauthorKalidindi, Arvind Rama
dc.contributor.mitauthorSchuh, Christopher A
dc.relation.journalJournal of Materials Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKalidindi, Arvind R.; Schuh, Christopher A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2854-650X
dc.identifier.orcidhttps://orcid.org/0000-0001-9856-2682
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record