Show simple item record

dc.contributor.authorAltschuler, Jason Max
dc.contributor.authorWeed, Jonathan
dc.contributor.authorRigollet, Philippe
dc.date.accessioned2018-06-19T12:13:02Z
dc.date.available2018-06-19T12:13:02Z
dc.date.issued2018-02
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/116389
dc.description.abstractComputing optimal transport distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact achieved by Cuturi's Sinkhorn Distances. This result relies on a new analysis of Sinkhorn iterations, which also directly suggests a new greedy coordinate descent algorithm GREENKHORN with the same theoretical guarantees. Numerical simulations illustrate that GREENKHORN significantly outperforms the classical SINKHORN algorithm in practice.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (1122374)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Faculty Early Career Development Program (DMS-1541099)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Faculty Early Career Development Program (DMS-1541100)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Faculty Early Career Development Program (DMS-1712596)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (W911NF-16-1-0551)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-17-1-2147)en_US
dc.description.sponsorshipMIT NEC Corporation (grant)en_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNeural Information Processing Systems (NIPS)en_US
dc.titleNear-linear time approximation algorithms for optimal transport via Sinkhorn iterationen_US
dc.typeArticleen_US
dc.identifier.citationAltschuler, Jason, Jonathan Weed and Philippe Rigollet. "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration." Advances in Neural Information Processing Systems 30 (NIPS 2017): 1961-1971.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorAltschuler, Jason Max
dc.contributor.mitauthorWeed, Jonathan
dc.contributor.mitauthorRigollet, Philippe
dc.relation.journalAdvances in Neural Information Processing Systemsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-30T13:10:45Z
dspace.orderedauthorsAltschuler, Jason; Weed Jonathan; Rigollet, Philippeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4933-1455
dc.identifier.orcidhttps://orcid.org/0000-0002-0135-7162
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record