Show simple item record

dc.contributor.authorKadambi, Achuta
dc.contributor.authorTaamazyan, Vage Aramaisovich
dc.contributor.authorShi, Boxin
dc.contributor.authorRaskar, Ramesh
dc.date.accessioned2018-06-19T13:49:25Z
dc.date.available2018-06-19T13:49:25Z
dc.date.issued2017-06
dc.identifier.issn0920-5691
dc.identifier.issn1573-1405
dc.identifier.urihttp://hdl.handle.net/1721.1/116399
dc.description.abstractAnalyzing the polarimetric properties of reflected light is a potential source of shape information. However, it is well-known that polarimetric information contains fundamental shape ambiguities, leading to an underconstrained problem of recovering 3D geometry. To address this problem, we use additional geometric information, from coarse depth maps, to constrain the shape information from polarization cues. Our main contribution is a framework that combines surface normals from polarization (hereafter polarization normals) with an aligned depth map. The additional geometric constraints are used to mitigate physics-based artifacts, such as azimuthal ambiguity, refractive distortion and fronto-parallel signal degradation. We believe our work may have practical implications for optical engineering, demonstrating a new option for state-of-the-art 3D reconstruction. Keywords: Computational photography, Light transport, Depth sensing, Shape from polarizationen_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11263-017-1025-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleDepth Sensing Using Geometrically Constrained Polarization Normalsen_US
dc.typeArticleen_US
dc.identifier.citationKadambi, Achuta, et al. “Depth Sensing Using Geometrically Constrained Polarization Normals.” International Journal of Computer Vision, vol. 125, no. 1–3, Dec. 2017, pp. 34–51.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMIT Skoltech Programen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorKadambi, Achuta
dc.contributor.mitauthorTaamazyan, Vage Aramaisovich
dc.contributor.mitauthorShi, Boxin
dc.contributor.mitauthorRaskar, Ramesh
dc.relation.journalInternational Journal of Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-10-30T09:21:16Z
dc.language.rfc3066en
dc.rights.holderSpringer Science+Business Media, LLC
dspace.orderedauthorsKadambi, Achuta; Taamazyan, Vage; Shi, Boxin; Raskar, Rameshen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-2444-2503
dc.identifier.orcidhttps://orcid.org/0000-0002-3254-3224
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record