Show simple item record

dc.contributor.authorMiller, Jason P.
dc.contributor.authorSheffield, Scott Roger
dc.date.accessioned2018-06-19T18:10:44Z
dc.date.available2018-06-19T18:10:44Z
dc.date.issued2016-07
dc.date.submitted2015-07
dc.identifier.issn0003-486X
dc.identifier.urihttp://hdl.handle.net/1721.1/116420
dc.description.abstractSuppose that D ⊆ C is a Jordan domain and x; y ∈ ∂D are distinct. Fix K 2 (4; 8), and let η be an SLE k process from x to y in D. We prove that the law of the time-reversal of η is, up to reparametrization, an SLE K process from y to x in D. More generally, we prove that SLE k (ρ1; ρ2) processes are reversible if and only if both ρ i are at least K=2-4, which is the critical threshold at or below which such curves are boundary filling. Our result supplies the missing ingredient needed to show that for all k ∈ (4; 8), the so-called conformal loop ensembles CLE K are canonically defined, with almost surely continuous loops. It also provides an interesting way to couple two Gaussian free fields (with different boundary conditions) so that their difference is piecewise constant and the boundaries between the constant regions are SLE K curves.en_US
dc.publisherAnnals of Mathematics, Princeton Uen_US
dc.relation.isversionofhttp://dx.doi.org/10.4007/ANNALS.2016.184.2.3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleImaginary geometry III: reversibility of SLEκ for κ ∈ (4, 8)en_US
dc.typeArticleen_US
dc.identifier.citationMiller, Jason, and Scott Sheffield. “Imaginary geometry III: reversibility of SLEκ for κ ∈ (4, 8)” Annals of Mathematics 184, no. 2 (September 1, 2016): 455–486.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMiller, Jason P.
dc.contributor.mitauthorSheffield, Scott Roger
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-30T15:45:11Z
dspace.orderedauthorsMiller, Jason; Sheffield, Scotten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5951-4933
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record