MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A¹-homotopy invariants of corner skew Laurent polynomial algebras

Author(s)
Trigo Neri Tabuada, Goncalo Jorge
Thumbnail
Download1603.09737.pdf (239.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this note we prove some structural properties of all the A1-homotopy invariants of corner skew Laurent polynomial algebras. As an application, we compute the mod-l algebraic K-theory of Leavitt path algebras using solely the kernel/cokernel of the incidence matrix. This leads naturally to some vanishing and divisibility properties of the K-theory of these algebras.
Date issued
2017-12
URI
http://hdl.handle.net/1721.1/116424
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Noncommutative Geometry
Publisher
European Mathematical Publishing House
Citation
Tabuada, Gonçalo. “$A¹-homotopy invariants of corner skew Laurent polynomial algebras.” Journal of Noncommutative Geometry 11, no. 4 (December 15, 2017): 1627–1643.
Version: Original manuscript
ISSN
1661-6952
Keywords
Corner skew Laurent polynomial algebra, Leavitt path algebra, algebraic K-theory, noncommutative mixed motives, noncommutative algebraic geometry

Collections
  • MIT Open Access Articles

Related items

Showing items related by title, author, creator and subject.

  • Thumbnail

    8.05 Quantum Physics II, Fall 2004 

    Stewart, Iain (2004-12)
    Together, this course and 8.06: Quantum Physics III cover quantum physics with applications drawn from modern physics. Topics covered in this course include the general formalism of quantum mechanics, harmonic oscillator, ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.