Scheduling Distributed Clusters of Parallel Machines : Primal-Dual and LP-based Approximation Algorithms
Author(s)
Murray, Riley; Khuller, Samir; Chao, Megan C.
Download453_2017_345_ReferencePDF.pdf (679.6Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The Map-Reduce computing framework rose to prominence with datasets of such size that dozens of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte scale, a single job may need distributed processing not only on multiple machines, but on multiple clusters. We consider a scheduling problem to minimize weighted average completion time of n jobs on m distributed clusters of parallel machines. In keeping with the scale of the problems motivating this work, we assume that (1) each job is divided into m “subjobs” and (2) distinct subjobs of a given job may be processed concurrently. When each cluster is a single machine, this is the NP-Hard concurrent open shop problem. A clear limitation of such a model is that a serial processing assumption sidesteps the issue of how different tasks of a given subjob might be processed in parallel. Our algorithms explicitly model clusters as pools of resources and effectively overcome this issue. Under a variety of parameter settings, we develop two constant factor approximation algorithms for this problem. The first algorithm uses an LP relaxation tailored to this problem from prior work. This LP-based algorithm provides strong performance guarantees. Our second algorithm exploits a surprisingly simple mapping to the special case of one machine per cluster. This mapping-based algorithm is combinatorial and extremely fast. These are the first constant factor approximations for this problem.
Date issued
2017-07Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Algorithmica
Publisher
Springer-Verlag
Citation
Murray, Riley, Samir Khuller, and Megan Chao. “Scheduling Distributed Clusters of Parallel Machines : Primal-Dual and LP-Based Approximation Algorithms.” Algorithmica 80, no. 10 (July 19, 2017): 2777–2798.
Version: Author's final manuscript
ISSN
0178-4617
1432-0541