Show simple item record

dc.contributor.authorSayin, Volkan I.
dc.contributor.authorSingh, Simranjit X.
dc.contributor.authorLeBoeuf, Sarah E.
dc.contributor.authorKarakousi, Triantafyllia R.
dc.contributor.authorMartinez, Britney
dc.contributor.authorBronson, Roderick T.
dc.contributor.authorPrigge, Justin R.
dc.contributor.authorSchmidt, Edward E.
dc.contributor.authorThomas, Craig J.
dc.contributor.authorGoparaju, Chandra
dc.contributor.authorDavies, Angela
dc.contributor.authorDolgalev, Igor
dc.contributor.authorHeguy, Adriana
dc.contributor.authorAllaj, Viola
dc.contributor.authorPoirier, John T.
dc.contributor.authorMoreira, Andre L.
dc.contributor.authorRudin, Charles M.
dc.contributor.authorPass, Harvey I.
dc.contributor.authorPapagiannakopoulos, Thales
dc.contributor.authorDavidson, Shawn M.
dc.contributor.authorBauer, Matthew R.
dc.contributor.authorEllis, Donald Christian
dc.contributor.authorBhutkar, Arjun
dc.contributor.authorSanchez-Rivera, Francisco Javier
dc.contributor.authorSubbaraj, Lakshmipriya
dc.contributor.authorVander Heiden, Matthew G.
dc.contributor.authorJacks, Tyler E.
dc.contributor.authorRomero, Rodrigo,Ph. D.Massachusetts Institute of Technology.
dc.date.accessioned2018-06-22T19:12:01Z
dc.date.available2018-06-22T19:12:01Z
dc.date.issued2017-10
dc.date.submitted2017-04
dc.identifier.issn1078-8956
dc.identifier.issn1546-170X
dc.identifier.urihttp://hdl.handle.net/1721.1/116537
dc.description.abstractTreating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NM.4407en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleKeap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysisen_US
dc.typeArticleen_US
dc.identifier.citationRomero, Rodrigo et al. “Keap1 Loss Promotes Kras-Driven Lung Cancer and Results in Dependence on Glutaminolysis.” Nature Medicine (October 2017): 1362–1368 © 2017 Nature America, Inc., part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorRomero, Rodrigo
dc.contributor.mitauthorDavidson, Shawn M.
dc.contributor.mitauthorBauer, Matthew R.
dc.contributor.mitauthorEllis, Donald Christian
dc.contributor.mitauthorBhutkar, Arjun
dc.contributor.mitauthorSanchez-Rivera, Francisco Javier
dc.contributor.mitauthorSubbaraj, Lakshmipriya
dc.contributor.mitauthorVander Heiden, Matthew G.
dc.contributor.mitauthorJacks, Tyler E.
dc.relation.journalNature Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-22T18:43:43Z
dspace.orderedauthorsRomero, Rodrigo; Sayin, Volkan I; Davidson, Shawn M; Bauer, Matthew R; Singh, Simranjit X; LeBoeuf, Sarah E; Karakousi, Triantafyllia R; Ellis, Donald C; Bhutkar, Arjun; Sánchez-Rivera, Francisco J; Subbaraj, Lakshmipriya; Martinez, Britney; Bronson, Roderick T; Prigge, Justin R; Schmidt, Edward E; Thomas, Craig J; Goparaju, Chandra; Davies, Angela; Dolgalev, Igor; Heguy, Adriana; Allaj, Viola; Poirier, John T; Moreira, Andre L; Rudin, Charles M; Pass, Harvey I; Vander Heiden, Matthew G; Jacks, Tyler; Papagiannakopoulos, Thalesen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1689-0784
dc.identifier.orcidhttps://orcid.org/0000-0002-4233-0775
dc.identifier.orcidhttps://orcid.org/0000-0002-6702-4192
dc.identifier.orcidhttps://orcid.org/0000-0001-5785-8911
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record