dc.contributor.author | Zhao, Boyang | |
dc.contributor.author | Hemann, Michael | |
dc.contributor.author | Lauffenburger, Douglas A | |
dc.date.accessioned | 2018-06-25T13:02:27Z | |
dc.date.available | 2018-06-25T13:02:27Z | |
dc.date.issued | 2016-03 | |
dc.identifier.issn | 24058033 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116546 | |
dc.description.abstract | Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure toward drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review we discuss the promising opportunities that these interdisciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. | en_US |
dc.description.sponsorship | David H. Koch Cancer Research Fund (Grant P30-CA14051) | en_US |
dc.description.sponsorship | National Cancer Institute (U.S.). Integrative Cancer Biology Program (Grant U54-CA112967) | en_US |
dc.description.sponsorship | National Institute of General Medical Sciences (U.S.). Interdepartmental Biotechnology Training Program (5T32GM008334) | en_US |
dc.publisher | Elsevier BV | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/J.TRECAN.2016.02.001 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.subject | intratumoral heterogeneity tumor clonal evolution mathematical/computational modeling drug combinations drug resistance | en_US |
dc.title | Modeling Tumor Clonal Evolution for Drug Combinations Design | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Zhao, Boyang, Michael T. Hemann, and Douglas A. Lauffenburger. “Modeling Tumor Clonal Evolution for Drug Combinations Design.” Trends in Cancer 2, no. 3 (March 2016): 144–158. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computational and Systems Biology Program | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.mitauthor | Zhao, Boyang | |
dc.contributor.mitauthor | Hemann, Michael | |
dc.contributor.mitauthor | Lauffenburger, Douglas A | |
dc.relation.journal | Trends in Cancer | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-06-21T17:28:32Z | |
dspace.orderedauthors | Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4610-1707 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0050-989X | |
mit.license | PUBLISHER_CC | en_US |