Show simple item record

dc.contributor.authorKauke, Monique Jacqueline
dc.contributor.authorTisdale, Alison W.
dc.contributor.authorKelly, Ryan Lewis
dc.contributor.authorBraun, Christian Jorg
dc.contributor.authorHemann, Michael
dc.contributor.authorWittrup, Karl Dane
dc.date.accessioned2018-06-25T13:50:15Z
dc.date.available2018-06-25T13:50:15Z
dc.date.issued2018-05
dc.identifier.issn1535-7163
dc.identifier.issn1538-8514
dc.identifier.urihttp://hdl.handle.net/1721.1/116547
dc.description.abstractMutated in approximately 30% of human cancers, Ras GTPases are the most common drivers of oncogenesis and render tumors unresponsive to many standard therapies. Despite decades of research, no drugs directly targeting Ras are currently available. We have previously characterized a small protein antagonist of K-Ras, R11.1.6, and demonstrated its direct competition with Raf for Ras binding. Here we evaluate the effects of R11.1.6 on Ras signaling and cellular proliferation in a panel of human cancer cell lines. Through lentiviral transduction, we generated cell lines that constitutively or through induction with doxycycline express R11.1.6 or a control protein YW1 and show specific binding by R11.1.6 to endogenous Ras through microscopy and co-immunoprecipitation experiments. Genetically-encoded intracellular expression of this high-affinity Ras antagonist, however, fails to measurably disrupt signaling through either the MAPK or PI3K pathway. Consistently, cellular proliferation was unaffected as well. To understand this lack of signaling inhibition, we quantified the number of molecules of R11.1.6 expressed by the inducible cell lines and developed a simple mathematical model describing the competitive binding of Ras by R11.1.6 and Raf. This model supports a potential mechanism for the lack of biological effects that we observed, suggesting stoichiometric and thermodynamic barriers that should be overcome in pharmacological efforts to directly compete with downstream effector proteins localized to membranes at very high effective concentrations.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant 5 -R01-CA096504 -15)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Associate Director Funden_US
dc.description.sponsorshipMassachusetts Institute of Technology. Frontier Funden_US
dc.description.sponsorshipDavid H. Koch Institute for Integrative Cancer Research at MIT. (Support core Grant P30- CA14051)en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.). Interdepartmental Biotechnology Training Program ([T32 GM008334-25)en_US
dc.description.sponsorshipGerman Cancer Foundation (Mildred-Scheel fellowship)en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Ludwig Center for Cancer Researchen_US
dc.relation.isversionofhttp://dx.doi.org/10.1158/1535-7163.MCT-17-0645en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceAmerican Association for Cancer Researchen_US
dc.subjectRas, targeted therapy, competitive inhibitor, cell signaling, mathematical modelingen_US
dc.titleA Raf-competitive K-Ras binder can fail to functionally antagonize signalingen_US
dc.typeArticleen_US
dc.identifier.citationKauke, Monique J., Alison W. Tisdale, Ryan L. Kelly, Christian J. Braun, Michael T. Hemann, and K. Dane Wittrup. “A Raf-Competitive K-Ras Binder Can Fail to Functionally Antagonize Signaling.” Molecular Cancer Therapeutics (May 2, 2018):.en_US
dc.contributor.departmentDavid H. Koch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorKauke, Monique Jacqueline
dc.contributor.mitauthorTisdale, Alison W.
dc.contributor.mitauthorKelly, Ryan Lewis
dc.contributor.mitauthorBraun, Christian Jorg
dc.contributor.mitauthorHemann, Michael
dc.contributor.mitauthorWittrup, Karl Dane
dc.relation.journalMolecular Cancer Therapeuticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-21T17:05:49Z
dspace.orderedauthorsKauke, Monique J.; Tisdale, Alison W.; Kelly, Ryan L.; Braun, Christian J.; Hemann, Michael T.; Wittrup, K. Daneen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0013-3941
dc.identifier.orcidhttps://orcid.org/0000-0002-3161-2785
dc.identifier.orcidhttps://orcid.org/0000-0001-5003-9104
dc.identifier.orcidhttps://orcid.org/0000-0002-5229-8748
dc.identifier.orcidhttps://orcid.org/0000-0003-2398-5896
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record