Show simple item record

dc.contributor.authorHorn, Berthold K. P.
dc.contributor.authorWang, Liang
dc.contributor.authorStrang, W. Gilbert
dc.date.accessioned2018-06-25T15:46:24Z
dc.date.available2018-06-25T15:46:24Z
dc.date.issued2016-09
dc.date.submitted2016-05
dc.identifier.issn0022-2526
dc.identifier.issn1467-9590
dc.identifier.urihttp://hdl.handle.net/1721.1/116562
dc.description.abstractMany authors have recognized that traffic under the traditional car-following model (CFM) is subject to flow instabilities. A recent model achieves stability using bilateral control (BCM)—by looking both forward and backward [1]. (Looking back may be difficult or distracting for human drivers, but is not a problem for sensors.) We analyze the underlying systems of differential equations by studying their eigenvalues and eigenvectors under various boundary conditions. Simulations further confirm that bilateral control can avoid instabilities and reduce the chance of collisions.en_US
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/SAPM.12144en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Strang via Michael Nogaen_US
dc.titleEigenvalue and Eigenvector Analysis of Stability for a Line of Trafficen_US
dc.typeArticleen_US
dc.identifier.citationWang, Liang et al. “Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic.” Studies in Applied Mathematics 138, 1 (September 2016): 103–132 © 2016 Wiley Periodicals, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorHorn, Berthold K. P.
dc.contributor.mitauthorWang, Liang
dc.contributor.mitauthorStrang, W. Gilbert
dc.relation.journalStudies in Applied Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-20T15:10:12Z
dspace.orderedauthorsWang, Liang; Horn, Berthold K. P.; Strang, Gilberten_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3434-391X
dc.identifier.orcidhttps://orcid.org/0000-0002-9300-1832
dc.identifier.orcidhttps://orcid.org/0000-0001-7473-9287
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record