Show simple item record

dc.contributor.authorCabrera, Janel R.
dc.contributor.authorGorelov, Rebecca A.
dc.contributor.authorKuperwasser, Charlotte
dc.contributor.authorMiller, Daniel Handel
dc.contributor.authorJin, Dexter X.
dc.contributor.authorSokol, Ethan Samuel
dc.contributor.authorSuperville, Daphne A.
dc.contributor.authorGupta, Piyush
dc.date.accessioned2018-06-25T18:46:29Z
dc.date.available2018-06-25T18:46:29Z
dc.date.issued2018-03
dc.date.submitted2018-01
dc.identifier.issn2213-6711
dc.identifier.urihttp://hdl.handle.net/1721.1/116579
dc.description.abstractThe epithelial compartment of the mammary gland contains basal and luminal cell lineages, as well as stem and progenitor cells that reside upstream in the differentiation hierarchy. Stem and progenitor cell differentiation is regulated to maintain adult tissue and mediate expansion during pregnancy and lactation. The genetic factors that regulate the transition of cells between differentiation states remain incompletely understood. Here, we present a genome-scale method to discover genes driving cell-state specification. Applying this method, we identify a transcription factor, BCL11B, which drives stem cell self-renewal in vitro, by inhibiting differentiation into the basal lineage. To validate BCL11B's functional role, we use two-dimensional colony-forming and three-dimensional tissue differentiation assays to assess the lineage differentiation potential and functional abilities of primary human mammary cells. These findings show that BCL11B regulates mammary cell differentiation and demonstrate the utility of our proposed genome-scale strategy for identifying lineage regulators in mammalian tissues. Miller et al. describe a strategy to identify candidate master regulators of cell lineage specification. This approach identified BCL11B as a key regulator of human mammary stem cell self-renewal in in vitro progenitor and differentiation assays. Using a combination of 2D and 3D primary cell culture techniques, they show that BCL11B drives stem cell self-renewal by inhibiting basal lineage commitment.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1122374)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.stemcr.2018.01.036en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleBCL11B Drives Human Mammary Stem Cell Self-Renewal In Vitro by Inhibiting Basal Differentiationen_US
dc.typeArticleen_US
dc.identifier.citationMiller, Daniel H. et al. “BCL11B Drives Human Mammary Stem Cell Self-Renewal In Vitro by Inhibiting Basal Differentiation.” Stem Cell Reports 10, 3 (March 2018): 1131–1145 © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorMiller, Daniel Handel
dc.contributor.mitauthorJin, Dexter X.
dc.contributor.mitauthorSokol, Ethan Samuel
dc.contributor.mitauthorSuperville, Daphne A.
dc.contributor.mitauthorGupta, Piyush
dc.relation.journalStem Cell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-21T13:57:13Z
dspace.orderedauthorsMiller, Daniel H.; Jin, Dexter X.; Sokol, Ethan S.; Cabrera, Janel R.; Superville, Daphne A.; Gorelov, Rebecca A.; Kuperwasser, Charlotte; Gupta, Piyush B.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4866-1145
dc.identifier.orcidhttps://orcid.org/0000-0003-1533-6730
dc.identifier.orcidhttps://orcid.org/0000-0002-2988-0537
dc.identifier.orcidhttps://orcid.org/0000-0002-9703-1780
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record