dc.contributor.author | Bougas, Lykourgos | |
dc.contributor.author | Wilzewski, Alexander | |
dc.contributor.author | Dumeige, Yannick | |
dc.contributor.author | Antypas, Dionysios | |
dc.contributor.author | Wu, Teng | |
dc.contributor.author | Wickenbrock, Arne | |
dc.contributor.author | Bourgeois, Emilie | |
dc.contributor.author | Nesladek, Milos | |
dc.contributor.author | Budker, Dmitry | |
dc.contributor.author | Clevenson, Hannah A | |
dc.contributor.author | Braje, Danielle A. | |
dc.contributor.author | Englund, Dirk R. | |
dc.date.accessioned | 2018-06-25T19:16:24Z | |
dc.date.available | 2018-06-25T19:16:24Z | |
dc.date.issued | 2018-06 | |
dc.date.submitted | 2018-05 | |
dc.identifier.issn | 2072-666X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116584 | |
dc.description.abstract | We propose the use of a diamond waveguide structure to enhance the sensitivity of magnetometers relying on the detection of the spin state of nitrogen-vacancy ensembles in diamond by infrared optical absorption. An optical waveguide structure allows for enhanced optical path-lengths avoiding the use of optical cavities and complicated setups. The presented design for diamond-based magnetometers enables miniaturization while maintaining high sensitivity and forms the basis for magnetic field sensors applicable in biomedical, industrial and space-related applications. Keywords: diamond-based magnetometer; NV-centers; compact sensor | en_US |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.3390/mi9060276 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Multidisciplinary Digital Publishing Institute | en_US |
dc.title | On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bougas, Lykourgos et al. "On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries." Micromachines 9, 6 (June 2018): 276 © 2018 The Authors | en_US |
dc.contributor.department | Lincoln Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Clevenson, Hannah A | |
dc.contributor.mitauthor | Braje, Danielle A. | |
dc.contributor.mitauthor | Englund, Dirk R. | |
dc.relation.journal | Micromachines | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-06-25T07:43:23Z | |
dspace.orderedauthors | Bougas, Lykourgos; Wilzewski, Alexander; Dumeige, Yannick; Antypas, Dionysios; Wu, Teng; Wickenbrock, Arne; Bourgeois, Emilie; Nesladek, Milos; Clevenson, Hannah; Braje, Danielle; Englund, Dirk; Budker, Dmitry | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7405-4613 | |
mit.license | PUBLISHER_CC | en_US |