Show simple item record

dc.contributor.authorLi, Xian
dc.contributor.authorPustulka, Samantha
dc.contributor.authorPedu, Scott
dc.contributor.authorXue, Yuan
dc.contributor.authorRichter, Christiaan
dc.contributor.authorTaboada-Serrano, Patricia
dc.contributor.authorClose, Thomas Charles
dc.date.accessioned2018-06-26T14:54:03Z
dc.date.available2018-06-26T14:54:03Z
dc.date.issued2018-06
dc.date.submitted2018-04
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/1721.1/116618
dc.description.abstractHighly ordered titanium dioxide nanotubes (TiO<sub>2</sub> NTs) were fabricated through anodization and tested for their applicability as model electrodes in electrosorption studies. The crystalline structure of the TiO<sub>2</sub> NTs was changed without modifying the nanostructure of the surface. Electrosorption capacity, charging rate, and electrochemical active surface area of TiO<sub>2</sub> NTs with two different crystalline structures, anatase and amorphous, were investigated via chronoamperometry, cyclic voltammetry, and electrochemical impedance spectroscopy. The highest electrosorption capacities and charging rates were obtained for the anatase TiO<sub>2</sub> NTs, largely because anatase TiO<sub>2</sub> has a reported higher electrical conductivity and a crystalline structure that can potentially accommodate small ions within. Both electrosorption capacity and charging rate for the ions studied in this work follow the order of Cs<sup>+</sup> &gt; Na<sup>+</sup> &gt; Li<sup>+</sup>, regardless of the crystalline structure of the TiO<sub>2</sub> NTs. This order reflects the increasing size of the hydrated ion radii of these monovalent ions. Additionally, larger effective electrochemical active surface areas are required for larger ions and lower conductivities. These findings point towards the fact that smaller hydrated-ions experience less steric hindrance and a larger comparative electrostatic force, enabling them to be more effectively electrosorbed.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/nano8060404en_US
dc.rightsCreative Commons Attributionen_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleTitanium Dioxide Nanotubes as Model Systems for Electrosorption Studiesen_US
dc.typeArticleen_US
dc.identifier.citationLI, Xian, Samantha Pustulka, Scott Pedu, Thomas Close, Yuan Xue, Christiaan Richter and Patricia Taboada-Serrano. "Titanium Dioxide Nanotubes as Model Systems for Electrosorption Studies." Nanomaterials, 2018, 8(6), 404.en_US
dc.contributor.mitauthorClose, Thomas Charles
dc.relation.journalNanomaterialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-25T07:43:09Z
dspace.orderedauthorsLi, Xian; Pustulka, Samantha; Pedu, Scott; Close, Thomas; Xue, Yuan; Richter, Christiaan; Taboada-Serrano, Patriciaen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record