Show simple item record

dc.contributor.authorMcGrath, Timothy Michael
dc.contributor.authorFineman, Richard Andres
dc.contributor.authorStirling, Leia A.
dc.date.accessioned2018-06-26T15:06:15Z
dc.date.available2018-06-26T15:06:15Z
dc.date.issued2018-06
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/1721.1/116622
dc.description.abstractInertial measurement units (IMUs) have been demonstrated to reliably measure human joint angles&mdash;an essential quantity in the study of biomechanics. However, most previous literature proposed IMU-based joint angle measurement systems that required manual alignment or prescribed calibration motions. This paper presents a simple, physically-intuitive method for IMU-based measurement of the knee flexion/extension angle in gait without requiring alignment or discrete calibration, based on computationally-efficient and easy-to-implement Principle Component Analysis (PCA). The method is compared against an optical motion capture knee flexion/extension angle modeled through OpenSim. The method is evaluated using both measured and simulated IMU data in an observational study (<i>n</i> = 15) with an absolute root-mean-square-error (RMSE) of 9.24<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula> and a zero-mean RMSE of 3.49<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>. Variation in error across subjects was found, made emergent by the larger subject population than previous literature considers. Finally, the paper presents an explanatory model of RMSE on IMU mounting location. The observational data suggest that RMSE of the method is a function of thigh IMU perturbation and axis estimation quality. However, the effect size for these parameters is small in comparison to potential gains from improved IMU orientation estimations. Results also highlight the need to set relevant datums from which to interpret joint angles for both truth references and estimated data.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (GRFP)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-1453141)en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/s18061882en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleAn Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensorsen_US
dc.typeArticleen_US
dc.identifier.citationMcGrath, Timothy, Richard Fineman and Leia Stirling. "An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors." Sensors 2018, 18(6), 1882.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorMcGrath, Timothy Michael
dc.contributor.mitauthorFineman, Richard Andres
dc.contributor.mitauthorStirling, Leia A.
dc.relation.journalSensorsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-25T07:43:21Z
dspace.orderedauthorsMcGrath, Timothy; Fineman, Richard; Stirling, Leiaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6582-0865
dc.identifier.orcidhttps://orcid.org/0000-0003-1672-8189
dc.identifier.orcidhttps://orcid.org/0000-0002-0119-1617
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record