Show simple item record

dc.contributor.authorArganda-Carreras, Ignacio
dc.contributor.authorTuraga, Srinivas C.
dc.contributor.authorBerger, Daniel R.
dc.contributor.authorCireşan, Dan
dc.contributor.authorGiusti, Alessandro
dc.contributor.authorGambardella, Luca M.
dc.contributor.authorSchmidhuber, Jürgen
dc.contributor.authorLaptev, Dmitry
dc.contributor.authorDwivedi, Sarvesh
dc.contributor.authorBuhmann, Joachim M.
dc.contributor.authorLiu, Ting
dc.contributor.authorSeyedhosseini, Mojtaba
dc.contributor.authorTasdizen, Tolga
dc.contributor.authorKamentsky, Lee
dc.contributor.authorBurget, Radim
dc.contributor.authorUher, Vaclav
dc.contributor.authorTan, Xiao
dc.contributor.authorSun, Changming
dc.contributor.authorPham, Tuan D.
dc.contributor.authorBas, Erhan
dc.contributor.authorUzunbas, Mustafa G.
dc.contributor.authorCardona, Albert
dc.contributor.authorSchindelin, Johannes
dc.contributor.authorSeung, H. Sebastian
dc.date.accessioned2018-06-27T20:03:56Z
dc.date.available2018-06-27T20:03:56Z
dc.date.issued2015-11
dc.date.submitted2015-05
dc.identifier.issn1662-5129
dc.identifier.urihttp://hdl.handle.net/1721.1/116672
dc.description.abstractTo stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This “deep learning” approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.en_US
dc.publisherFrontiers Media SAen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/FNANA.2015.00142en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleCrowdsourcing the creation of image segmentation algorithms for connectomicsen_US
dc.typeArticleen_US
dc.identifier.citationArganda-Carreras, Ignacio, et al. “Crowdsourcing the Creation of Image Segmentation Algorithms for Connectomics.” Frontiers in Neuroanatomy, vol. 9, Nov. 2015. © 2015 The Authorsen_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.mitauthorKamentsky, Lee
dc.relation.journalFrontiers in Neuroanatomyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-06-27T16:39:42Z
dspace.orderedauthorsArganda-Carreras, Ignacio; Turaga, Srinivas C.; Berger, Daniel R.; Cireşan, Dan; Giusti, Alessandro; Gambardella, Luca M.; Schmidhuber, Jürgen; Laptev, Dmitry; Dwivedi, Sarvesh; Buhmann, Joachim M.; Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga; Kamentsky, Lee; Burget, Radim; Uher, Vaclav; Tan, Xiao; Sun, Changming; Pham, Tuan D.; Bas, Erhan; Uzunbas, Mustafa G.; Cardona, Albert; Schindelin, Johannes; Seung, H. Sebastianen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8161-3604
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record