Show simple item record

dc.contributor.authorVenderbos, Joern Willem Friedrich
dc.contributor.authorSavary, Lucile
dc.contributor.authorRuhman, Yehonatan
dc.contributor.authorLee, Patrick A
dc.contributor.authorFu, Liang
dc.date.accessioned2018-07-02T18:25:16Z
dc.date.available2018-07-02T18:25:16Z
dc.date.issued2018-02
dc.date.submitted2017-12
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/1721.1/116726
dc.description.abstractWe study the topological properties of superconductors with paired j=3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j=3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes. Subject Areas: Condensed Matter Physics, Superconductivity, Topological Insulatorsen_US
dc.language.isoen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevX.8.011029en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titlePairing States of Spin--3/2 Fermions: Symmetry-Enforced Topological Gap Functionsen_US
dc.typeArticleen_US
dc.identifier.citationVenderbos, Jörn W. F., et al. “Pairing States of Spin- 3/2 Fermions: Symmetry-Enforced Topological Gap Functions.” Physical Review X, vol. 8, no. 1, Feb. 2018.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorVenderbos, Joern Willem Friedrich
dc.contributor.mitauthorSavary, Lucile
dc.contributor.mitauthorRuhman, Yehonatan
dc.contributor.mitauthorLee, Patrick A
dc.contributor.mitauthorFu, Liang
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVenderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0543-6298
dc.identifier.orcidhttps://orcid.org/0000-0003-3706-8503
dc.identifier.orcidhttps://orcid.org/0000-0001-7809-8157
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record