Experimental studies of the NaCs 12(0+) [7¹Σ+] state
Author(s)
Faust, C.; Jones, J.; Huennekens, J.; Field, Robert W
DownloadJCP_146_p104302.pdf (3.182Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We present results from experimental studies of the 11(0+) and 12(0+) electronic states of the NaCs molecule. An optical-optical double resonance method is used to obtain Doppler-free excitation spectra. Selected data from the 11(0+) and 12(0+) high-lying electronic states are used to obtain Rydberg-Klein-Rees and Inverse Perturbation Approach potential energy curves. Interactions between these two electronic states are evident in the patterns observed in the bound-bound and bound-free fluorescence spectra. A model, based on two separate interaction mechanisms, is presented to describe how the wavefunctions of the two states mix. The electronic parts of the wavefunctions interact via spin-orbit coupling, while the individual rotation-vibration levels interact via a second mechanism, which is likely to be non-adiabatic coupling. A modified version of the BCONT program was used to simulate resolved fluorescence from both upper states. Parameters of the model that describe the two interaction mechanisms were varied until simulations were able to adequately reproduce experimental spectra.
Date issued
2017-03Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of ChemistryJournal
The Journal of Chemical Physics
Citation
Faust, C., J. Jones, J. Huennekens, and R. W. Field. “Experimental Studies of the NaCs 12(0+) [71Σ+] State: Spin-Orbit and Non-Adiabatic Interactions and Quantum Interference in the 12(0+) [71Σ+] and 11(0+) [53Π0] Emission Spectra.” The Journal of Chemical Physics 146, no. 10 (March 14, 2017): 104302.
Version: Final published version
ISSN
0021-9606
1089-7690