dc.contributor.author | Li, Taibo | |
dc.contributor.author | Kim, April | |
dc.contributor.author | Rosenbluh, Joseph | |
dc.contributor.author | Horn, Heiko | |
dc.contributor.author | Greenfeld, Liraz | |
dc.contributor.author | An, David | |
dc.contributor.author | Zimmer, Andrew | |
dc.contributor.author | Liberzon, Arthur | |
dc.contributor.author | Bistline, Jon | |
dc.contributor.author | Natoli, Ted | |
dc.contributor.author | Li, Yang | |
dc.contributor.author | Tsherniak, Aviad | |
dc.contributor.author | Narayan, Rajiv | |
dc.contributor.author | Subramanian, Aravind | |
dc.contributor.author | Liefeld, Ted | |
dc.contributor.author | Wong, Bang | |
dc.contributor.author | Thompson, Dawn | |
dc.contributor.author | Calvo, Sarah | |
dc.contributor.author | Carr, Steve | |
dc.contributor.author | Boehm, Jesse | |
dc.contributor.author | Jaffe, Jake | |
dc.contributor.author | Mesirov, Jill | |
dc.contributor.author | Hacohen, Nir | |
dc.contributor.author | Regev, Aviv | |
dc.contributor.author | Lage, Kasper | |
dc.date.accessioned | 2018-07-05T13:38:42Z | |
dc.date.available | 2018-07-05T13:38:42Z | |
dc.date.issued | 2018-06 | |
dc.date.submitted | 2018-05 | |
dc.identifier.issn | 1548-7091 | |
dc.identifier.issn | 1548-7105 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116783 | |
dc.description.abstract | Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets. | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/s41592-018-0039-6 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | bioRxiv | en_US |
dc.title | GeNets: a unified web platform for network-based genomic analyses | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Li, Taibo et al. “GeNets: a Unified Web Platform for Network-Based Genomic Analyses.” Nature Methods 15, 7 (June 2018): 543–546 © 2018 The Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Li, Taibo | |
dc.contributor.mitauthor | Regev, Aviv | |
dc.relation.journal | Nature Methods | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-07-03T14:06:13Z | |
dspace.orderedauthors | Li, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasper | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-8567-2049 | |
mit.license | OPEN_ACCESS_POLICY | en_US |