Show simple item record

dc.contributor.authorLi, Taibo
dc.contributor.authorKim, April
dc.contributor.authorRosenbluh, Joseph
dc.contributor.authorHorn, Heiko
dc.contributor.authorGreenfeld, Liraz
dc.contributor.authorAn, David
dc.contributor.authorZimmer, Andrew
dc.contributor.authorLiberzon, Arthur
dc.contributor.authorBistline, Jon
dc.contributor.authorNatoli, Ted
dc.contributor.authorLi, Yang
dc.contributor.authorTsherniak, Aviad
dc.contributor.authorNarayan, Rajiv
dc.contributor.authorSubramanian, Aravind
dc.contributor.authorLiefeld, Ted
dc.contributor.authorWong, Bang
dc.contributor.authorThompson, Dawn
dc.contributor.authorCalvo, Sarah
dc.contributor.authorCarr, Steve
dc.contributor.authorBoehm, Jesse
dc.contributor.authorJaffe, Jake
dc.contributor.authorMesirov, Jill
dc.contributor.authorHacohen, Nir
dc.contributor.authorRegev, Aviv
dc.contributor.authorLage, Kasper
dc.date.accessioned2018-07-05T13:38:42Z
dc.date.available2018-07-05T13:38:42Z
dc.date.issued2018-06
dc.date.submitted2018-05
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttp://hdl.handle.net/1721.1/116783
dc.description.abstractFunctional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41592-018-0039-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcebioRxiven_US
dc.titleGeNets: a unified web platform for network-based genomic analysesen_US
dc.typeArticleen_US
dc.identifier.citationLi, Taibo et al. “GeNets: a Unified Web Platform for Network-Based Genomic Analyses.” Nature Methods 15, 7 (June 2018): 543–546 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLi, Taibo
dc.contributor.mitauthorRegev, Aviv
dc.relation.journalNature Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-03T14:06:13Z
dspace.orderedauthorsLi, Taibo; Kim, April; Rosenbluh, Joseph; Horn, Heiko; Greenfeld, Liraz; An, David; Zimmer, Andrew; Liberzon, Arthur; Bistline, Jon; Natoli, Ted; Li, Yang; Tsherniak, Aviad; Narayan, Rajiv; Subramanian, Aravind; Liefeld, Ted; Wong, Bang; Thompson, Dawn; Calvo, Sarah; Carr, Steve; Boehm, Jesse; Jaffe, Jake; Mesirov, Jill; Hacohen, Nir; Regev, Aviv; Lage, Kasperen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8567-2049
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record