Show simple item record

dc.contributor.authorGupta, Vishal
dc.contributor.authorKallus, Nathan
dc.contributor.authorBertsimas, Dimitris J
dc.date.accessioned2018-07-06T17:51:59Z
dc.date.available2018-07-06T17:51:59Z
dc.date.issued2017-02
dc.date.submitted2015-09
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/116834
dc.description.abstractThe last decade witnessed an explosion in the availability of data for operations research applications. Motivated by this growing availability, we propose a novel schema for utilizing data to design uncertainty sets for robust optimization using statistical hypothesis tests. The approach is flexible and widely applicable, and robust optimization problems built from our new sets are computationally tractable, both theoretically and practically. Furthermore, optimal solutions to these problems enjoy a strong, finite-sample probabilistic guarantee whenever the constraints and objective function are concave in the uncertainty. We describe concrete procedures for choosing an appropriate set for a given application and applying our approach to multiple uncertain constraints. Computational evidence in portfolio management and queueing confirm that our data-driven sets significantly outperform traditional robust optimization techniques whenever data are available. Keywords: Robust optimization, Data-driven optimization, Chance-constraints, Hypothesis testingen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-017-1125-8en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleData-driven robust optimizationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, et al. “Data-Driven Robust Optimization.” Mathematical Programming, vol. 167, no. 2, Feb. 2018, pp. 235–92.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorBertsimas, Dimitris J
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-30T04:46:13Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsBertsimas, Dimitris; Gupta, Vishal; Kallus, Nathanen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record