Show simple item record

dc.contributor.authorColey, Connor Wilson
dc.contributor.authorBarzilay, Regina
dc.contributor.authorGreen Jr, William H
dc.contributor.authorJaakkola, Tommi S
dc.contributor.authorJensen, Klavs F
dc.date.accessioned2018-07-06T18:30:05Z
dc.date.available2018-07-06T18:30:05Z
dc.date.issued2017-07
dc.date.submitted2016-10
dc.identifier.issn1549-9596
dc.identifier.issn1549-960X
dc.identifier.urihttp://hdl.handle.net/1721.1/116837
dc.description.abstractThe task of learning an expressive molecular representation is central to developing quantitative structure–activity and property relationships. Traditional approaches rely on group additivity rules, empirical measurements or parameters, or generation of thousands of descriptors. In this paper, we employ a convolutional neural network for this embedding task by treating molecules as undirected graphs with attributed nodes and edges. Simple atom and bond attributes are used to construct atom-specific feature vectors that take into account the local chemical environment using different neighborhood radii. By working directly with the full molecular graph, there is a greater opportunity for models to identify important features relevant to a prediction task. Unlike other graph-based approaches, our atom featurization preserves molecule-level spatial information that significantly enhances model performance. Our models learn to identify important features of atom clusters for the prediction of aqueous solubility, octanol solubility, melting point, and toxicity. Extensions and limitations of this strategy are discussed.en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jcim.6b00601en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Green via Erja Kajosaloen_US
dc.titleConvolutional Embedding of Attributed Molecular Graphs for Physical Property Predictionen_US
dc.typeArticleen_US
dc.identifier.citationColey, Connor W. et al “Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction.” Journal of Chemical Information and Modeling 57, 8 (July 2017): 1757–1772 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.approverGreen, William Hen_US
dc.contributor.mitauthorColey, Connor Wilson
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorGreen Jr, William H
dc.contributor.mitauthorJaakkola, Tommi S
dc.contributor.mitauthorJensen, Klavs F
dc.relation.journalJournal of Chemical Information and Modelingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsColey, Connor W.; Barzilay, Regina; Green, William H.; Jaakkola, Tommi S.; Jensen, Klavs F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8271-8723
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0003-2603-9694
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0001-7192-580X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record