Show simple item record

dc.contributor.authorZhang, Xiaochang
dc.contributor.authorChen, Ming Hui
dc.contributor.authorKodani, Andrew
dc.contributor.authorFan, Jean
dc.contributor.authorDoan, Ryan
dc.contributor.authorOzawa, Manabu
dc.contributor.authorMa, Jacqueline
dc.contributor.authorYoshida, Nobuaki
dc.contributor.authorReiter, Jeremy F.
dc.contributor.authorBlack, Douglas L.
dc.contributor.authorKharchenko, Peter V.
dc.contributor.authorWalsh, Christopher A.
dc.contributor.authorSharp, Phillip A.
dc.contributor.authorWu, Xuebing, Ph. D. Massachusetts Institute of Technology
dc.date.accessioned2018-07-09T18:04:58Z
dc.date.available2018-07-09T18:04:58Z
dc.date.issued2016-08
dc.date.submitted2016-05
dc.identifier.issn0092-8674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/116859
dc.description.abstractAlternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains—especially in cytoskeletal proteins—and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development. Keywords: filamin A; Ninein; Ptbp1; Rbfox; microcephaly; periventricular nodular heterotopia; mother centrioleen_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant P01-CA42063)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELL.2016.07.025en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleCell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortexen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Xiaochang et al. “Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex.” Cell 166, 5 (August 2016): 1147–1162 © 2016 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorWu, Xuebing
dc.contributor.mitauthorSharp, Phillip A.
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-09T16:32:39Z
dspace.orderedauthorsZhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing; Kodani, Andrew; Fan, Jean; Doan, Ryan; Ozawa, Manabu; Ma, Jacqueline; Yoshida, Nobuaki; Reiter, Jeremy F.; Black, Douglas L.; Kharchenko, Peter V.; Sharp, Phillip A.; Walsh, Christopher A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0369-5269
dc.identifier.orcidhttps://orcid.org/0000-0003-1465-1691
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record