MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes

Author(s)
McCammon, Jasmine M.; Blaker-Lee, Alicia; Chen, Xiao; Sive, Hazel L.
Thumbnail
Downloadddx255.pdf (1.308Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Deletion of the 16p11.2 CNV affects 25 core genes and is associated with multiple symptoms affecting brain and body, including seizures, hyperactivity,macrocephaly, and obesity. Available data suggest thatmost symptoms are controlled by haploinsufficiency of two or more 16p11.2 genes. To identify interacting 16p11.2 genes, we used a pairwise partial loss of function antisense screen for embryonic brainmorphology, using the accessible zebrafish model. fam57ba, encoding a ceramide synthase, was identified as interacting with the doc2a gene, encoding a calcium-sensitive exocytosis regulator, a genetic interaction not previously described. Using genetic mutants, we demonstrated that doc2a+/-fam57ba+/-double heterozygotes show hyperactivity and increased seizure susceptibility relative to wild-type or single doc2a-/-or fam57ba-/-mutants. Additionally, doc2a+/-fam57ba+/-double heterozygotes demonstrate the increased body length and head size. Single doc2a+/-and fam57ba+/-heterozygotes do not show a body size increase; however, fam57ba-/-homozygous mutants show a strongly increased head size and body length, suggesting a greater contribution from fam57ba to the haploinsufficient interaction between doc2a and fam57ba. The doc2a+/-fam57ba+/-interaction has not been reported before, nor has any 16p11.2 gene previously been linked to increased body size. These findings demonstrate that one pair of 16p11.2 homologs can regulate both brain and body phenotypes that are reflective of those in people with 16p11.2 deletion. Together, these findings suggest that dysregulation of ceramide pathways and calcium sensitive exocytosis underlies seizures and large body size associated with 16p11.2 homologs in zebrafish. The data inform consideration of mechanisms underlying human 16p11.2 deletion symptoms.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/116865
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Human Molecular Genetics
Publisher
Oxford University Press (OUP)
Citation
McCammon, Jasmine M. et al. “The 16p11.2 Homologs Fam57ba and Doc2a Generate Certain Brain and Body Phenotypes.” Human Molecular Genetics 26, 19 (July 2017): 3699–3712 © 2017 The Author(s)
Version: Final published version
ISSN
0964-6906
1460-2083

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.