Show simple item record

dc.contributor.authorTenorio, Luis
dc.contributor.authorGarg, Vikram V
dc.contributor.authorWillcox, Karen E
dc.date.accessioned2018-07-11T14:20:57Z
dc.date.available2018-07-11T14:20:57Z
dc.date.issued2016-02
dc.date.submitted2014-05
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttp://hdl.handle.net/1721.1/116885
dc.description.abstractWe present a local density estimator based on first-order statistics. To estimate the density at a point, x, the original sample is divided into subsets and the average minimum sample distance to x over all such subsets is used to define the density estimate at x. The tuning parameter is thus the number of subsets instead of the typical bandwidth of kernel or histogram-based density estimators. The proposed method is similar to nearest-neighbor density estimators but it provides smoother estimates. We derive the asymptotic distribution of this minimum sample distance statistic to study globally optimal values for the number and size of the subsets. Simulations are used to illustrate and compare the convergence properties of the estimator. The results show that the method provides good estimates of a wide variety of densities without changes of the tuning parameter, and that it offers competitive convergence performance.en_US
dc.description.sponsorshipUnited States. Department of Energy. Applied Mathematical Sciences Program (Award DE-FG02-08ER2585)en_US
dc.description.sponsorshipUnited States. Department of Energy. Applied Mathematical Sciences Program (Award de-sc0009297)en_US
dc.publisherInforma UK Limiteden_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/03610926.2014.988260en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMinimum local distance density estimationen_US
dc.typeArticleen_US
dc.identifier.citationGarg, Vikram V., et al. “Minimum Local Distance Density Estimation.” Communications in Statistics - Theory and Methods, vol. 46, no. 1, Jan. 2017, pp. 148–64. © 2017 Taylor & Francis Group, LLCen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorGarg, Vikram V
dc.contributor.mitauthorWillcox, Karen E
dc.relation.journalCommunications in Statistics - Theory and Methodsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-17T17:14:28Z
dspace.orderedauthorsGarg, Vikram V.; Tenorio, Luis; Willcox, Karenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record