MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes

Author(s)
Lun, Zhengyan; Ji, Huiwen; Balasubramanian, Mahalingam; Kwon, Deok-Hwang; Dai, Kehua; Lei, Teng; McCloskey, Bryan D.; Yang, Wanli; Kitchaev, Daniil Andreevich; Richards, William D; Clement, Raphaele Juliette; Papp, Joseph C; Lee, Jinhyuk; Ceder, Gerbrand; ... Show more Show less
Thumbnail
Downloadc8ee00816g.pdf (3.988Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial 3.0 Unported https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
The discovery of facile Li transport in disordered, Li-excess rocksalt materials has opened a vast new chemical space for the development of high energy density, low cost Li-ion cathodes. We develop a strategy for obtaining optimized compositions within this class of materials, exhibiting high capacity and energy density as well as good reversibility, by using a combination of low-valence transition metal redox and a high-valence redox active charge compensator, as well as fluorine substitution for oxygen. Furthermore, we identify a new constraint on high-performance compositions by demonstrating the necessity of excess Li capacity as a means of counteracting high-voltage tetrahedral Li formation, Li-binding by fluorine and the associated irreversibility. Specifically, we demonstrate that 10–12% of Li capacity is lost due to tetrahedral Li formation, and 0.4–0.8 Li per F dopant is made inaccessible at moderate voltages due to Li–F binding. We demonstrate the success of this strategy by realizing a series of high-performance disordered oxyfluoride cathode materials based on Mn²+/⁴+ and V⁴+/⁵+ redox.
Date issued
2018-07-12
URI
http://hdl.handle.net/1721.1/116929
Department
Lincoln Laboratory; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Energy & Environmental Science
Publisher
Royal Society of Chemistry (RSC)
Citation
Kitchaev, Daniil A., Zhengyan Lun, William D. Richards, Huiwen Ji, Raphaële J. Clément, Mahalingam Balasubramanian, Deok-Hwang Kwon, et al. “Design Principles for High Transition Metal Capacity in Disordered Rocksalt Li-Ion Cathodes.” Energy & Environmental Science (2018).
Version: Final published version
ISSN
1754-5692
1754-5706

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.