MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiphase turbulence mechanisms identification from consistent analysis of direct numerical simulation data

Author(s)
Brown, Cameron; Bolotnov, Igor A.; Tryggvason, Gretar; Lu, Jiacai; Magolan, Benjamin Lawrence; Baglietto, Emilio; ... Show more Show less
Thumbnail
Download1-s2.0-S1738573317303078-main.pdf (1.857Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Direct Numerical Simulation (DNS) serves as an irreplaceable tool to probe the complexities of multiphase flow and identify turbulent mechanisms that elude conventional experimental measurement techniques. The insights unlocked via its careful analysis can be used to guide the formulation and development of turbulence models used in multiphase computational fluid dynamics simulations of nuclear reactor applications. Here, we perform statistical analyses of DNS bubbly flow data generated by Bolotnov (Reτ= 400) and Lu–Tryggvason (Reτ= 150), examining single-point statistics of mean and turbulent liquid properties, turbulent kinetic energy budgets, and two-point correlations in space and time. Deformability of the bubble interface is shown to have a dramatic impact on the liquid turbulent stresses and energy budgets. A reduction in temporal and spatial correlations for the streamwise turbulent stress (uu) is also observed at wall-normal distances of y+= 15, y/δ = 0.5, and y/δ = 1.0. These observations motivate the need for adaptation of length and time scales for bubble-induced turbulence models and serve as guidelines for future analyses of DNS bubbly flow data. Keywords: Budget Equations, Bubble-Induced Turbulence, DNS, M&C2017, Multiphase CFD
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/116997
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
Nuclear Engineering and Technology
Publisher
Elsevier BV
Citation
Magolan, Ben, et al. “Multiphase Turbulence Mechanisms Identification from Consistent Analysis of Direct Numerical Simulation Data.” Nuclear Engineering and Technology, vol. 49, no. 6, Sept. 2017, pp. 1318–25.
Version: Final published version
ISSN
1738-5733

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.