## Fourientations and the Tutte polynomial

##### Author(s)

Backman, Spencer; Hopkins, Sam
Download40687_2017_Article_107.pdf (3.023Mb)

PUBLISHER_CC

# Publisher with Creative Commons License

Creative Commons Attribution

##### Terms of use

##### Metadata

Show full item record##### Abstract

A fourientation of a graph is a choice for each edge of the graph whether to orient that edge in either direction, leave it unoriented, or biorient it. Fixing a total order on the edges and a reference orientation of the graph, we investigate properties of cuts and cycles in fourientations which give trivariate generating functions that are generalized Tutte polynomial evaluations of the form (k + m)[superscript n−1](k + l)[superscript gT](αk + βl + m/k + m , γ k + l + δm/ k + l) for α, γ ∈ {0, 1, 2} and β, δ ∈ {0, 1}. We introduce an intersection lattice of 64 cut–cycle fourientation classes enumerated by generalized Tutte polynomial evaluations of this form. We prove these enumerations using a single deletion–contraction argument and
classify axiomatically the set of fourientation classes to which our deletion–contraction argument applies. This work unifies and extends earlier results for fourientations due to Gessel and Sagan (Electron J Combin 3(2):Research Paper 9, 1996), results for partial orientations due to Backman (Adv Appl Math, forthcoming, 2014. arXiv:1408.3962), and
Hopkins and Perkinson (Trans Am Math Soc 368(1):709–725, 2016), as well as results for total orientations due to Stanley (Discrete Math 5:171–178, 1973; Higher combinatorics (Proceedings of NATO Advanced Study Institute, Berlin, 1976). NATO Advanced Study Institute series, series C: mathematical and physical sciences, vol 31, Reidel, Dordrecht, pp 51–62, 1977), Las Vergnas (Progress in graph theory (Proceedings, Waterloo silver
jubilee conference 1982), Academic Press, New York, pp 367–380, 1984), Greene and Zaslavsky (Trans Am Math Soc 280(1):97–126, 1983), and Gioan (Eur J Combin 28(4):1351–1366, 2007), which were previously unified by Gioan (2007), Bernardi (Electron J Combin 15(1):Research Paper 109, 2008), and Las Vergnas (Tutte polynomial of a morphism of matroids 6. A multi-faceted counting formula for hyperplane regions and acyclic orientations, 2012. arXiv:1205.5424). We conclude by describing how these
classes of fourientations relate to geometric, combinatorial, and algebraic objects including bigraphical arrangements, cycle–cocycle reversal systems, graphic Lawrence ideals, Riemann–Roch theory for graphs, zonotopal algebra, and the reliability polynomial. Keywords: Partial graph orientations, Tutte polynomial, Deletion–contraction, Hyperplane arrangements, Cycle–cocycle reversal system, Chip-firing, G-parking functions, Abelian sandpile model, Riemann–Roch theory for graphs, Lawrence ideals, Zonotopal algebra, Reliability polynomial

##### Date issued

2017-09##### Department

Massachusetts Institute of Technology. Department of Mathematics##### Journal

Research in the Mathematical Sciences

##### Publisher

Springer International Publishing

##### Citation

Backman, Spencer, and Sam Hopkins. “Fourientations and the Tutte Polynomial.” Research in the Mathematical Sciences, vol. 4, no. 1, Dec. 2017. © 2017 The Authors

Version: Final published version

##### ISSN

2197-9847