MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

STRUCT: A Second-Generation URANS Approach for Effective Design of Advanced Systems

Author(s)
Baglietto, Emilio; Lenci, Giancarlo; Concu, Davide
Thumbnail
DownloadV01BT12A004-FEDSM2017-69241.pdf (1.734Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This work presents the recently developed STRUCT hybrid turbulence model and assesses its potential to address the poor grid consistency and limited engineering applicability typical of hybrid models. Renouncing the ability to consistently bridge RANS, LES and DNS based on the computational grid size, we aim at addressing the engineering design needs with a different mindset. We opt to leverage the robustness and computational efficiency of URANS in all nearly homogeneous flow regions while extending it to locally resolve complex flow structures, where the concept of Reynolds averaging is poorly applicable. The proposed approach is best characterized as a second generation URANS closure, which triggers controlled resolution of turbulence inside selected flow regions. The resolution is controlled by a single-point parameter representing the turbulent timescale separation, which quantitatively identifies topological flow structures of interest. The STRUCT approach demonstrates LES-like capabilities on much coarser grids, and consistently increases the accuracy of the predictions from the baseline URANS at increasing grid finesse. The encouraging results show the potential to support effective design application through resolution of complex flow structures while controlling the computational cost. The ultimate objective is to continue improving the robustness and computational efficiency while further assessing the accuracy and range of applicability.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/117004
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Volume 1B, Symposia: Fluid Measurement and Instrumentation; Fluid Dynamics of Wind Energy; Renewable and Sustainable Energy Conversion; Energy and Process Engineering; Microfluidics and Nanofluidics; Development and Applications in Computational Fluid Dynamics; DNS/LES and Hybrid RANS/LES Methods
Publisher
ASME International
Citation
Baglietto, Emilio, et al. "STRUCT: A Second-Generation URANS Approach for Effective Design of Advanced Systems." Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, July 30-August 3, 2017, Waikoloa, Hawaii, ASME, 2017, p. V01BT12A004. © 2017 ASME
Version: Final published version
ISBN
978-0-7918-5805-9

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.