MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells

Author(s)
Chen, Yu; Chen, Yan; Ding, Dong; Ding, Yong; Choi, YongMan; Yoo, Seonyoung; Chen, Dongchang; deGlee, Ben; Lu, Qiyang; Zhao, Bote; Vardar, Gulin; Wang, Jiayue; Bluhm, Hendrik; Crumlin, Ethan J.; Yang, Chenghao; Liu, Jiang; Yildiz, Bilge; Liu, Meilin; Zhang, Lei, Ph. D Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, fl. 2014.; Xu, Han, M. Eng. Massachusetts Institute of Technology; ... Show more Show less
Thumbnail
Downloadyan_ees_2017.pdf (3.012Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The sluggish oxygen reduction reaction (ORR) greatly reduces the energy efficiency of solid oxide fuel cells (SOFCs). Here we report our findings in dramatically enhancing the ORR kinetics and durability of the state-of-the-art La[subscript 0.6]Sr[subscript 0.4]Co[subscript 0.2]Fe[subscript 0.8]O[subscript 3](LSCF) cathode using a hybrid catalyst coating composed of a conformal PrNi[subscript 0.5]Mn[subscript 0.5]O[subscript 3](PNM) thin film with exsoluted PrOxnanoparticles. At 750°C, the hybrid catalyst-coated LSCF cathode shows a polarization resistance of ∼0.022 Ω cm[superscript 2], about 1/6 of that for a bare LSCF cathode (∼0.134 Ω cm[superscript 2]). Further, anode-supported cells with the hybrid catalyst-coated LSCF cathode demonstrate remarkable peak power densities (∼1.21 W cm[superscript -2]) while maintaining excellent durability (0.7 V for ∼500 h). Near Ambient X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) analyses, together with density functional theory (DFT) calculations, indicate that the oxygen-vacancy-rich surfaces of the PrOxnanoparticles greatly accelerate the rate of electron transfer in the ORR whereas the thin PNM film facilitates rapid oxide-ion transport while drastically enhancing the surface stability of the LSCF electrode.
Date issued
2017-04
URI
http://hdl.handle.net/1721.1/117088
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Laboratory for Electrochemical Interfaces
Journal
Energy & Environmental Science
Publisher
Royal Society of Chemistry (RSC)
Citation
Chen, Yu et al. “A Robust and Active Hybrid Catalyst for Facile Oxygen Reduction in Solid Oxide Fuel Cells.” Energy & Environmental Science 10, 4 (2017): 964–971 © 2017 The Royal Society of Chemistry
Version: Author's final manuscript
ISSN
1754-5692
1754-5706

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.