MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

2-Complexes with Large 2-Girth

Author(s)
Dotterrer, Dominic; Kahle, Matthew; Guth, Lawrence
Thumbnail
Download454_2017_9926_ReferencePDF.pdf (308.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The 2-girth of a 2-dimensional simplicial complex X is the minimum size of a non-zero 2-cycle in H[subscript 2](X,Z/2) . We consider the maximum possible girth of a complex with n vertices and m 2-faces. If m=n[superscript 2+α] for α<1/2 , then we show that the 2-girth is at most 4n[superscript 2−2α] and we prove the existence of complexes with 2-girth at least c[subscript α,ϵ]n[superscript 2−2α−ϵ]. On the other hand, if α>1/2, the 2-girth is at most Cα . So there is a phase transition as α passes 1 / 2. Our results depend on a new upper bound for the number of combinatorial types of triangulated surfaces with v vertices and f faces. Keywords: Random simplicial complexes, Homology, Counting surfaces
Date issued
2017-09
URI
http://hdl.handle.net/1721.1/117122
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Discrete & Computational Geometry
Publisher
Springer US
Citation
Dotterrer, Dominic, et al. “2-Complexes with Large 2-Girth.” Discrete & Computational Geometry, vol. 59, no. 2, Mar. 2018, pp. 383–412.
Version: Author's final manuscript
ISSN
0179-5376
1432-0444

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.