Show simple item record

dc.contributor.authorXie, Xin
dc.contributor.authorBigdeli Karimi, Majid
dc.contributor.authorLiu, Sanwei
dc.contributor.authorMyanganbayar, Battushig
dc.contributor.authorLivermore, Carol
dc.date.accessioned2018-07-26T17:47:03Z
dc.date.available2018-07-26T17:47:03Z
dc.date.issued2018-07
dc.date.submitted2018-06
dc.identifier.issn2072-666X
dc.identifier.urihttp://hdl.handle.net/1721.1/117141
dc.description.abstractSmall-scale, out-of-plane actuators can enable tactile interfaces; however, achieving sufficient actuator force and displacement can require larger actuators. In this work, 2-mm<sup>2</sup> out-of-plane microactuators were created, and were demonstrated to output up to 6.3 µm of displacement and 16 mN of blocking force at 170 V. The actuators converted in-plane force and displacement from a piezoelectric extensional actuator into out-of-plane force and displacement using robust, microelectromechanical systems (MEMS)-enabled, half-scissor amplifiers. The microscissors employed two layers of lithographically patterned SU-8 epoxy microstructures, laminated with a thin film of structural polyimide and adhesive to form compact flexural hinges that enabled the actuators&rsquo; small area. The self-aligned manufacture minimized assembly error and fabrication complexity. The scissor design dominated the actuators&rsquo; performance, and the effects of varying scissor angle, flexure thickness, and adhesive type were characterized to optimize the actuators' output. Reducing the microscissor angle yielded the highest actuator performance, as it maximized the amplification of the half-scissor's displacement and minimized scissor deformation under externally applied loads. The actuators' simultaneously large displacements and blocking forces for their size were quantified by a high displacement-blocking force product per unit area of up to 50 mN·µm/mm². For a linear force&ndash;displacement relationship, this corresponds to a work done per unit area of 25 mN·µm/mm². Keywords: microactuators; tactile actuators; piezoelectric actuators; scissor mechanism; motion amplifier; out-of-plane actuatoren_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/mi9070365en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleMicro Motion Amplifiers for Compact Out-of-Plane Actuationen_US
dc.typeArticleen_US
dc.identifier.citationXie, Xin et al. "Micro Motion Amplifiers for Compact Out-of-Plane Actuation." Micromachines 9, 7 (July 2018): 365 © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMyanganbayar, Battushig
dc.relation.journalMicromachinesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-25T12:41:14Z
dspace.orderedauthorsXie, Xin; Bigdeli Karimi, Majid; Liu, Sanwei; Myanganbayar, Battushig; Livermore, Carolen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record