Show simple item record

dc.contributor.authorBauch, Erik
dc.contributor.authorHart, Connor A.
dc.contributor.authorTurner, Matthew J.
dc.contributor.authorKehayias, Pauli
dc.contributor.authorSingh, Swati
dc.contributor.authorWalsworth, Ronald L.
dc.contributor.authorSchloss, Jennifer May
dc.contributor.authorBarry, John F.
dc.date.accessioned2018-07-27T17:10:24Z
dc.date.available2018-07-27T17:10:24Z
dc.date.issued2018-07
dc.date.submitted2018-06
dc.identifier.issn2160-3308
dc.identifier.urihttp://hdl.handle.net/1721.1/117159
dc.description.abstractQuantum spin dephasing is caused by inhomogeneous coupling to the environment, with resulting limits to the measurement time and precision of spin-based sensors. The effects of spin dephasing can be especially pernicious for dense ensembles of electronic spins in the solid state, such as nitrogen-vacancy (NV) color centers in diamond. We report the use of two complementary techniques, spin-bath driving, and double quantum coherence magnetometry, to enhance the inhomogeneous spin dephasing time (T_{2}^{*}) for NV ensembles by more than an order of magnitude. In combination, these quantum control techniques (i) eliminate the effects of the dominant NV spin ensemble dephasing mechanisms, including crystal strain gradients and dipolar interactions with paramagnetic bath spins, and (ii) increase the effective NV gyromagnetic ratio by a factor of two. Applied independently, spin-bath driving and double quantum coherence magnetometry elucidate the sources of spin ensemble dephasing over a wide range of NV and bath spin concentrations. These results demonstrate the longest reported T_{2}^{*} in a solid-state electronic spin ensemble at room temperature and outline a path towards NV-diamond dc magnetometers with broadband femtotesla sensitivity.en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-15-1-0548)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant ECCS-1408075)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant PHY-1504610)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant EAR-1647504)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevX.8.031025en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleUltralong Dephasing Times in Solid-State Spin Ensembles via Quantum Controlen_US
dc.typeArticleen_US
dc.identifier.citationBauch, Erik et al. "Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control." Physical Review X 8, 3 (July 2018): 031025en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorSchloss, Jennifer May
dc.contributor.mitauthorBarry, John F.
dc.relation.journalPhysical Review Xen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-26T18:00:17Z
dc.language.rfc3066en
dspace.orderedauthorsBauch, Erik; Hart, Connor A.; Schloss, Jennifer M.; Turner, Matthew J.; Barry, John F.; Kehayias, Pauli; Singh, Swati; Walsworth, Ronald L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4905-8564
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record