Show simple item record

dc.contributor.authorHan, Yimo
dc.contributor.authorLi, Ming-Yang
dc.contributor.authorMarsalis, Mark A.
dc.contributor.authorLi, Lain-Jong
dc.contributor.authorMuller, David A.
dc.contributor.authorJung, Gang Seob
dc.contributor.authorQin, Zhao
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2018-07-27T17:31:27Z
dc.date.available2018-07-27T17:31:27Z
dc.date.issued2017-12
dc.date.submitted2017-03
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/117163
dc.description.abstractTwo-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling. Thus far, atomically thin p-n junctions, metal-semiconductor contacts, and metal-insulator barriers have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications.en_US
dc.description.sponsorshipUnited States. Office of Naval Research ((Grant N00014-16-1-233)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant FA9550-15-1-0514)en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NMAT5038en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleSub-nanometre channels embedded in two-dimensional materialsen_US
dc.typeArticleen_US
dc.identifier.citationHan, Yimo et al. “Sub-Nanometre Channels Embedded in Two-Dimensional Materials.” Nature Materials 17, 2 (December 2017): 129–133 © 2017 Macmillan Publishers Limited, part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorJung, Gang Seob
dc.contributor.mitauthorQin, Zhao
dc.contributor.mitauthorBuehler, Markus J
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-27T15:01:34Z
dspace.orderedauthorsHan, Yimo; Li, Ming-Yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8047-6505
dc.identifier.orcidhttps://orcid.org/0000-0002-4173-9659
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record