MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Data From the Web to Predict Public Transport Arrivals Under Special Events Scenarios

Author(s)
Rodrigues, Filipe; Pereira, Francisco; Ben-Akiva, Moshe E
Thumbnail
Downloadwebsourced.pdf (2.076Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The Internet has become the preferred resource to announce, search, and comment about social events such as concerts, sports games, parades, demonstrations, sales, or any other public event that potentially gathers a large group of people. These planned special events often carry a potential disruptive impact to the transportation system, because they correspond to nonhabitual behavior patterns that are hard to predict and plan for. Except for very large and mega events (e.g., Olympic games, football world cup), operators seldom apply special planning measures for two major reasons: The task of manually tracking which events are happening in large cities is labor-intensive; and, even with a list of events, their impact is hard to estimate, especially when more than one event happens simultaneously. In this article, we utilize the Internet as a resource for contextual information about special events and develop a model that predicts public transport arrivals in event areas. In order to demonstrate the feasibility of this solution for practitioners, we apply off-the-shelf techniques both for Internet data collection and for the prediction model development. We demonstrate the results with a case study from the city-state of Singapore using public transport tap-in/tap-out data and local event information obtained from the Internet. Keywords: Data mining; Demand Prediction; Public Transport; Smartcard; Urban Computing; Web Mining
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/117168
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Intelligent Transportation Systems
Publisher
Taylor & Francis
Citation
Pereira, Francisco C. et al. “Using Data From the Web to Predict Public Transport Arrivals Under Special Events Scenarios.” Journal of Intelligent Transportation Systems 19, 3 (July 2014): 273–288 © 2015 Taylor & Francis Group, LLC
Version: Author's final manuscript
ISSN
1547-2450
1547-2442

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.