Show simple item record

dc.contributor.authorDuong, Xuan T
dc.contributor.authorLi, Ji
dc.contributor.authorWick, Brett D
dc.contributor.authorYang, Dongyong
dc.contributor.authorOu, Yumeng
dc.date.accessioned2018-07-31T12:17:00Z
dc.date.available2018-07-31T12:17:00Z
dc.date.issued2017-09
dc.date.submitted2017-06
dc.identifier.issn1050-6926
dc.identifier.issn1559-002X
dc.identifier.urihttp://hdl.handle.net/1721.1/117208
dc.description.abstractIn this paper, we study the product BMO space, little bmo space, and their connections with the corresponding commutators associated with Bessel operators studied by Weinstein, Huber, and Muckenhoupt–Stein. We first prove that the product BMO space in the Bessel setting can be used to deduce the boundedness of the iterated commutators with the Bessel Riesz transforms. We next study the little bmo space in this Bessel setting and obtain the equivalent characterization of this space in terms of commutators, where the main tool that we develop is the characterization of the predual of little bmo and its weak factorizations. We further show that in analogy with the classical setting the little bmo space is a proper subspace of the product BMO space. These extend the previous related results studied by Cotlar–Sadosky and Ferguson–Sadosky on the bidisc to the Bessel setting, where the usual analyticity and Fourier transform do not apply.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s12220-017-9920-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleProduct BMO, Little BMO, and Riesz Commutators in the Bessel Settingen_US
dc.typeArticleen_US
dc.identifier.citationDuong, Xuan Thinh, Ji Li, Yumeng Ou, Brett D. Wick, and Dongyong Yang. “Product BMO, Little BMO, and Riesz Commutators in the Bessel Setting.” The Journal of Geometric Analysis 28, no. 3 (September 16, 2017): 2558–2601.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorOu, Yumeng
dc.relation.journalThe Journal of Geometric Analysisen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-28T03:43:32Z
dc.language.rfc3066en
dc.rights.holderMathematica Josephina, Inc.
dspace.orderedauthorsDuong, Xuan Thinh; Li, Ji; Ou, Yumeng; Wick, Brett D.; Yang, Dongyongen_US
dspace.embargo.termsNen
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record