MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Current-Induced Domain Wall Motion in a Compensated Ferrimagnet

Author(s)
Siddiqui, Saima Afroz; Han, Jiahao; Finley, Joseph Tyler; Ross, Caroline A; Liu, Luqiao
Thumbnail
DownloadPhysRevLett.121.057701.pdf (1.517Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Owing to the difficulty in detecting and manipulating the magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. By employing heavy-metal–rare-earth–transition-metal alloy bilayers, we experimentally study current-induced domain wall dynamics in an antiferromagnetically coupled system. We show that the current-induced domain wall mobility reaches a maximum at the angular momentum compensation point. With experiment and modeling, we further reveal the internal structures of domain walls and the underlying mechanisms for their fast motion. We show that the chirality of the ferrimagnetic domain walls remains the same across the compensation points, suggesting that spin orientations of specific sublattices rather than net magnetization determine Dzyaloshinskii-Moriya interaction in heavy-metal–ferrimagnet bilayers. The high current-induced domain wall mobility and the robust domain wall chirality in compensated ferrimagnetic material opens new opportunities for high-speed spintronic devices.
Date issued
2018-07
URI
http://hdl.handle.net/1721.1/117209
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Siddiqui, Saima A., Jiahao Han, Joseph T. Finley, Caroline A. Ross and Luqiao Liu. "Current-Induced Domain Wall Motion in a Compensated Ferrimagnet." Physical Review Letters 121 (2018), 057701.
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.