MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

L-band vegetation optical depth and effective scattering albedo estimation from SMAP

Author(s)
Das, Narendra; Konings, Alexandra G; Piles Guillem, Maria; Entekhabi, Dara
Thumbnail
Download1-s2.0-S0034425717302961-main.pdf (2.078Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Over land the vegetation canopy affects the microwave brightness temperature by emission, scattering and attenuation of surface soil emission. Attenuation, as represented by vegetation optical depth (VOD), is a potentially useful ecological indicator. The NASA Soil Moisture Active Passive (SMAP) mission carries significant potential for VOD estimates because of its radio frequency interference mitigation efforts and because the L-band signal penetrates deeper into the vegetation canopy than the higher frequency bands used for many previous VOD retrievals. In this study, we apply the multi-temporal dual-channel retrieval algorithm (MT-DCA) to derive global VOD, soil moisture, and effective scattering albedo estimates from SMAP Backus-Gilbert enhanced brightness temperatures posted on a 9 km grid and with three day revisit time. SMAP VOD values from the MT-DCA follow expected global distributions and are shown to be highly correlated with canopy height. They are also broadly similar in magnitude (though not always in seasonal amplitude) to European Space Agency Soil Moisture and Ocean Salinity (SMOS) VOD. The SMOS VOD values are based on angular brightness temperature information while the SMAP measurements are at a constant incidence angle, requiring an alternate approach to VOD retrieval presented in this study. Globally, albedo values tend to be high over regions with heterogeneous land cover types. The estimated effective scattering albedo values are generally higher than those used in previous soil moisture estimation algorithms and linked to biome classifications. MT-DCA retrievals of soil moisture show only small random differences with soil moisture retrievals from the Baseline SMAP algorithm, which uses a prior estimate of VOD based on land cover and optical data. However, significant biases exist between the two datasets. The soil moisture biases follow the pattern of differences between the MT-DCA retrieved and Baseline-assigned VOD values.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/117279
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Remote Sensing of Environment
Publisher
Elsevier BV
Citation
Konings, Alexandra G., Maria Piles, Narendra Das, and Dara Entekhabi. “L-Band Vegetation Optical Depth and Effective Scattering Albedo Estimation from SMAP.” Remote Sensing of Environment 198 (September 2017): 460–470.
Version: Final published version
ISSN
00344257

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.