Show simple item record

dc.contributor.authorLenert, Andrej
dc.contributor.authorKats, Mikhail A.
dc.contributor.authorZhou, You
dc.contributor.authorZhang, Shuyan
dc.contributor.authorRamanathan, Shriram
dc.contributor.authorCapasso, Federico
dc.contributor.authorBierman, David Matthew
dc.contributor.authorDe La Ossa, Matthew F.
dc.contributor.authorWang, Evelyn
dc.date.accessioned2018-08-13T19:06:02Z
dc.date.available2018-08-13T19:06:02Z
dc.date.issued2018-08
dc.date.submitted2018-04
dc.identifier.issn2331-7019
dc.identifier.urihttp://hdl.handle.net/1721.1/117341
dc.description.abstractThermal runaway occurs when a rise in system temperature results in heat-generation rates exceeding dissipation rates. Here, we demonstrate that thermal runaway occurs in radiative (photon) systems given a sufficient level of negative-differential thermal emission. By exploiting the insulator-to-metal phase transition of vanadium dioxide, we show that a small increase in heat generation (e.g., 10nW/mm[superscript 2]) results in a large change in surface temperature (e.g., ∼35 K), as the thermal emitter switches from high emittance to low emittance. While thermal runaway is typically associated with catastrophic failure mechanisms, detailed understanding and control of this phenomenon may give rise to new opportunities in infrared sensing, camouflage, and rectification.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevApplied.10.021001en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleRadiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transitionen_US
dc.typeArticleen_US
dc.identifier.citationBierman, David M. et al. "Radiative Thermal Runaway Due to Negative-Differential Thermal Emission Across a Solid-Solid Phase Transition." Physical Review Applied 10, 2 (August 2018): 021001 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorBierman, David Matthew
dc.contributor.mitauthorDe La Ossa, Matthew F.
dc.contributor.mitauthorWang, Evelyn
dc.relation.journalPhysical Review Applieden_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-03T18:00:15Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsBierman, David M.; Lenert, Andrej; Kats, Mikhail A.; Zhou, You; Zhang, Shuyan; De La Ossa, Matthew; Ramanathan, Shriram; Capasso, Federico; Wang, Evelyn N.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9897-2670
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record