Show simple item record

dc.contributor.authorHellemo, Lars
dc.contributor.authorTomasgard, Asgeir
dc.contributor.authorBarton, Paul I
dc.date.accessioned2018-08-14T18:12:01Z
dc.date.available2018-08-14T18:12:01Z
dc.date.issued2018-08
dc.date.submitted2018-02
dc.identifier.issn1619-697X
dc.identifier.issn1619-6988
dc.identifier.urihttp://hdl.handle.net/1721.1/117361
dc.description.abstractStochastic programming with recourse usually assumes uncertainty to be exogenous. Our work presents modelling and application of decision-dependent uncertainty in mathematical programming including a taxonomy of stochastic programming recourse models with decision-dependent uncertainty. The work includes several ways of incorporating direct or indirect manipulation of underlying probability distributions through decision variables in two-stage stochastic programming problems. Two-stage models are formulated where prior probabilities are distorted through an affine transformation or combined using a convex combination of several probability distributions. Additionally, we present models where the parameters of the probability distribution are first-stage decision variables. The probability distributions are either incorporated in the model using the exact expression or by using a rational approximation. Test instances for each formulation are solved with a commercial solver, BARON, using selective branching.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10287-018-0330-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDecision-dependent probabilities in stochastic programs with recourseen_US
dc.typeArticleen_US
dc.identifier.citationHellemo, Lars et al. “Decision-Dependent Probabilities in Stochastic Programs with Recourse.” Computational Management Science (August 2018): 1-27 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Process Systems Engineering Laboratory
dc.contributor.mitauthorBarton, Paul I
dc.relation.journalComputational Management Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-12T03:37:14Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsHellemo, Lars; Barton, Paul I.; Tomasgard, Asgeiren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2895-9443
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record