dc.contributor.author | Siegel, Joshua E | |
dc.contributor.author | Kumar, Sumeet | |
dc.contributor.author | Ehrenberg, Isaac Mayer | |
dc.contributor.author | Sarma, Sanjay E | |
dc.date.accessioned | 2018-08-17T14:00:25Z | |
dc.date.available | 2018-08-17T14:00:25Z | |
dc.date.issued | 2016-09 | |
dc.identifier.isbn | 978-3-319-46130-4 | |
dc.identifier.isbn | 978-3-319-46131-1 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/117389 | |
dc.description.abstract | We address the problem of detecting whether an engine is misfiring by using machine learning techniques on transformed audio data collected from a smartphone. We recorded audio samples in an uncontrolled environment and extracted Fourier, Wavelet and Mel-frequency Cepstrum features from normal and abnormal engines. We then implemented Fisher Score and Relief Score based variable ranking to obtain an informative reduced feature set for training and testing classification algorithms. Using this feature set, we were able to obtain a model accuracy of over 99 % using a linear SVM applied to outsample data. This application of machine learning to vehicle subsystem monitoring simplifies traditional engine diagnostics, aiding vehicle owners in the maintenance process and opening up new avenues for pervasive mobile sensing and automotive diagnostics. Keywords: Pervasive sensing, Mobile phones, Sound classification, Audio processing, Fault detection, Machine learning | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1007/978-3-319-46131-1_26 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Subirana, Brian | en_US |
dc.title | Engine Misfire Detection with Pervasive Mobile Audio | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Siegel, Joshua, et al. “Engine Misfire Detection with Pervasive Mobile Audio.” Machine Learning and Knowledge Discovery in Databases, edited by Bettina Berendt et al., vol. 9853, Springer International Publishing, 2016, pp. 226–41. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.approver | Subirana, Brian | en_US |
dc.contributor.mitauthor | Siegel, Joshua E | |
dc.contributor.mitauthor | Kumar, Sumeet | |
dc.contributor.mitauthor | Ehrenberg, Isaac Mayer | |
dc.contributor.mitauthor | Sarma, Sanjay E | |
dc.relation.journal | Machine Learning and Knowledge Discovery in Databases | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Siegel, Joshua; Kumar, Sumeet; Ehrenberg, Isaac; Sarma, Sanjay | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5540-7401 | |
dc.identifier.orcid | https://orcid.org/0000-0003-1038-7598 | |
dc.identifier.orcid | https://orcid.org/0000-0003-2812-039X | |
mit.license | OPEN_ACCESS_POLICY | en_US |