Show simple item record

dc.contributor.authorSiegel, Joshua E
dc.contributor.authorKumar, Sumeet
dc.contributor.authorEhrenberg, Isaac Mayer
dc.contributor.authorSarma, Sanjay E
dc.date.accessioned2018-08-17T14:00:25Z
dc.date.available2018-08-17T14:00:25Z
dc.date.issued2016-09
dc.identifier.isbn978-3-319-46130-4
dc.identifier.isbn978-3-319-46131-1
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/117389
dc.description.abstractWe address the problem of detecting whether an engine is misfiring by using machine learning techniques on transformed audio data collected from a smartphone. We recorded audio samples in an uncontrolled environment and extracted Fourier, Wavelet and Mel-frequency Cepstrum features from normal and abnormal engines. We then implemented Fisher Score and Relief Score based variable ranking to obtain an informative reduced feature set for training and testing classification algorithms. Using this feature set, we were able to obtain a model accuracy of over 99 % using a linear SVM applied to outsample data. This application of machine learning to vehicle subsystem monitoring simplifies traditional engine diagnostics, aiding vehicle owners in the maintenance process and opening up new avenues for pervasive mobile sensing and automotive diagnostics. Keywords: Pervasive sensing, Mobile phones, Sound classification, Audio processing, Fault detection, Machine learningen_US
dc.language.isoen_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/978-3-319-46131-1_26en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSubirana, Brianen_US
dc.titleEngine Misfire Detection with Pervasive Mobile Audioen_US
dc.typeArticleen_US
dc.identifier.citationSiegel, Joshua, et al. “Engine Misfire Detection with Pervasive Mobile Audio.” Machine Learning and Knowledge Discovery in Databases, edited by Bettina Berendt et al., vol. 9853, Springer International Publishing, 2016, pp. 226–41.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverSubirana, Brianen_US
dc.contributor.mitauthorSiegel, Joshua E
dc.contributor.mitauthorKumar, Sumeet
dc.contributor.mitauthorEhrenberg, Isaac Mayer
dc.contributor.mitauthorSarma, Sanjay E
dc.relation.journalMachine Learning and Knowledge Discovery in Databasesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSiegel, Joshua; Kumar, Sumeet; Ehrenberg, Isaac; Sarma, Sanjayen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5540-7401
dc.identifier.orcidhttps://orcid.org/0000-0003-1038-7598
dc.identifier.orcidhttps://orcid.org/0000-0003-2812-039X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record