Design of a Clutchless Hybrid Transmission for a High-Performance Vehicle
Author(s)
Jacoby, Chad Lawrence; Jo, Young Suk; Jurewicz, Jacob M.; Pamanes Castillo, Guillermo; Siegel, Joshua E; Yen, Patricia; Dorsch, Daniel S.; Winter, Amos G.; ... Show more Show less
DownloadJS1.pdf (1.183Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
There exists the potential for major simplifications to current hybrid transmission architectures, which can lead to advances in powertrain performance. This paper assesses the technical merits of various hybrid powertrains in the context of high-performance vehicles and introduces a new transmission concept targeted at high performance hybrid applications. While many hybrid transmission configurations have been developed and implemented in mainstream and even luxury vehicles, ultra high performance sports cars have only recently begun to hybridize. The unique performance requirements of such vehicles place novel constraints on their transmissions designs. The goals become less about improved efficiency and smoothness and more centered on weight reduction, complexity reduction, and performance improvement. To identify the most critical aspects of a high performance transmission, a wide range of existing technologies is studied in concert with basic physical performance analysis of electrical motors and an internal combustion engine. The new transmission concepts presented here emphasize a reduction in inertial, frictional, and mechanical losses. A series of conceptual powertrain designs are evaluated against the goals of reducing mechanical complexity and maintaining functionality. The major innovation in these concepts is the elimination of a friction clutch to engage and disengage gears. Instead, the design proposes that the inclusion of a large electric motor enables the gears to be speed-matched and torque-zeroed without the inherent losses associated with a friction clutch. Additionally, these transmission concepts explore the merits of multiple electric motors and their placement as well as the reduction in synchronization interfaces. Ultimately, two strategies for speed-matched gear sets are considered, and a speed-matching prototype of the chosen methodology is presented to validate the feasibility of the proposed concept. The power flow and operational modes of both transmission architectures are studied to ensure required functionality and identify further areas of optimization. While there are still many unanswered questions about this concept, this paper introduces the base analysis and proof of concept for a technology that has great potential to advance hybrid vehicles at all levels.
Date issued
2015-08Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Massachusetts Institute of Technology. Laboratory for Nuclear Science; Sloan School of ManagementJournal
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Publisher
ASME
Citation
Jacoby, Chad L., et al. “Design of a Clutchless Hybrid Transmission for a High-Performance Vehicle.” ASME 2015 Power Transmission and Gearing Conference; 23rd Reliability, Stress Analysis, and Failure Prevention Conference, 2-5 August, 2015, Boston, Massachusetts, ASME, 2015, p. V010T11A056.
Version: Final published version
ISBN
978-0-7918-5720-5