Show simple item record

dc.contributor.authorAtmani, Lea
dc.contributor.authorBichara, Christophe
dc.contributor.authorVan Damme, Henri
dc.contributor.authorvan Duin, Adri C. T.
dc.contributor.authorRaza, Zamaan
dc.contributor.authorTruflandier, Lionel A.
dc.contributor.authorObliger, Amaël
dc.contributor.authorKralert, Paul G.
dc.contributor.authorLeyssale, Jean-Marc
dc.contributor.authorPellenq, Roland Jm
dc.contributor.authorUlm, Franz-Josef
dc.date.accessioned2018-08-22T16:08:04Z
dc.date.available2018-08-22T16:08:04Z
dc.date.issued2017-10
dc.date.submitted2017-08
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttp://hdl.handle.net/1721.1/117470
dc.description.abstractThe process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization. The composition of the solid residue along the maturation pathway strictly follows what is observed for natural type III kerogen and for artificially matured samples under confined conditions. After expulsion of the fluid phase, the obtained microporous kerogen possesses the structure, texture, density, porosity and stiffness observed for mature type III kerogen and a microporous carbon obtained by saccharose pyrolysis at low temperature. As expected for this variety of precursor, the main resulting hydrocarbon is methane. The present work thus demonstrates that molecular simulations can now be used to assess, almost quantitatively, such complex chemical processes as petrogenesis in fossil reservoirs and, more generally, the possible conversion of any natural product into bio-sourced materials and/or fuel.en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C7SC03466Ken_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleFrom cellulose to kerogen: molecular simulation of a geological processen_US
dc.typeArticleen_US
dc.identifier.citationAtmani, Lea et al. “From Cellulose to Kerogen: Molecular Simulation of a Geological Process.” Chemical Science 8, 12 (2017): 8325–8335en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorPellenq, Roland Jm
dc.contributor.mitauthorUlm, Franz-Josef
dc.relation.journalChemical Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-21T16:46:42Z
dspace.orderedauthorsAtmani, Lea; Bichara, Christophe; Pellenq, Roland J.-M.; Van Damme, Henri; van Duin, Adri C. T.; Raza, Zamaan; Truflandier, Lionel A.; Obliger, Amaël; Kralert, Paul G.; Ulm, Franz J.; Leyssale, Jean-Marcen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5559-4190
dc.identifier.orcidhttps://orcid.org/0000-0002-7089-8069
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record