Show simple item record

dc.contributor.authorElor, Gilly
dc.contributor.authorLiu, Hongwan
dc.contributor.authorSlatyer, Tracy Robyn
dc.contributor.authorSoreq, Yotam
dc.date.accessioned2018-08-22T19:42:07Z
dc.date.available2018-08-22T19:42:07Z
dc.date.issued2018-08
dc.date.submitted2018-02
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.urihttp://hdl.handle.net/1721.1/117493
dc.description.abstractWe explore the possibility that bound states involving dark matter particles could be detected by resonance searches at the LHC and the generic implications of such scenarios for indirect and direct detection. We demonstrate that resonance searches are complementary to monojet searches and can probe dark matter masses above 1 TeV with current LHC data. We argue that this parameter regime, in which the bound-state resonance channel is the most sensitive probe of the dark sector, arises most naturally in the context of nontrivial dark sectors with large couplings, nearly degenerate dark matter–like states, and multiple force carriers. If dark sector bound states are present and can be detected at the LHC, annihilation of dark matter particles in our galactic halo may occur either with a minimal Sommerfeld enhancement that may be appreciable or through radiative bound-state formation, leading to large signals in indirect searches. We calculate these complementary constraints, which favor either models in which the bound state–forming dark matter constitutes a small fraction of the total density or models in which the late-time annihilation is suppressed at low velocities or late times. We present concrete examples of models that satisfy all these constraints and in which the LHC resonance search is the most sensitive probe of the dark sector.en_US
dc.description.sponsorshipUnited States. Department of Energy. High Energy Physics Division (Grant DE-SC00012567)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0013999)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC00015476)en_US
dc.description.sponsorshipMIT Research Support Committeeen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevD.98.036015en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleComplementarity for dark sector bound statesen_US
dc.typeArticleen_US
dc.identifier.citationElor, Gilly, et al. “Complementarity for Dark Sector Bound States.” Physical Review D, vol. 98, no. 3, Aug. 2018.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorLiu, Hongwan
dc.contributor.mitauthorSlatyer, Tracy Robyn
dc.contributor.mitauthorSoreq, Yotam
dc.relation.journalPhysical Review Den_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-21T18:00:25Z
dc.language.rfc3066en
dspace.orderedauthorsElor, Gilly; Liu, Hongwan; Slatyer, Tracy R.; Soreq, Yotamen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2486-0681
dc.identifier.orcidhttps://orcid.org/0000-0001-9699-9047
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record