Show simple item record

dc.contributor.authorOh, Chang-Ki
dc.contributor.authorSultan, Abdullah
dc.contributor.authorPlatzer, Joseph
dc.contributor.authorDolatabadi, Nima
dc.contributor.authorSoldner, Frank
dc.contributor.authorMcClatchy, Daniel B.
dc.contributor.authorDiedrich, Jolene K.
dc.contributor.authorAmbasudhan, Rajesh
dc.contributor.authorNakamura, Tomohiro
dc.contributor.authorJaenisch, Rudolf
dc.contributor.authorLipton, Stuart A.
dc.contributor.authorYates, John R., III
dc.date.accessioned2018-08-24T14:52:37Z
dc.date.available2018-08-24T14:52:37Z
dc.date.issued2017-11
dc.identifier.issn2211-1247
dc.identifier.urihttp://hdl.handle.net/1721.1/117502
dc.description.abstractMutations in PARK6 (PINK1) and PARK2 (Parkin) are linked to rare familial cases of Parkinson's disease (PD). Mutations in these genes result in pathological dysregulation of mitophagy, contributing to neurodegeneration. Here, we report that environmental factors causing a specific posttranslational modification on PINK1 can mimic these genetic mutations. We describe a molecular mechanism for impairment of mitophagy via formation of S-nitrosylated PINK1 (SNO-PINK1). Mitochondrial insults simulating age- or environmental-related stress lead to increased SNO-PINK1, inhibiting its kinase activity. SNO-PINK1 decreases Parkin translocation to mitochondrial membranes, disrupting mitophagy in cell lines and human-iPSC-derived neurons. We find levels of SNO-PINK1 in brains of α-synuclein transgenic PD mice similar to those in cell-based models, indicating the pathophysiological relevance of our findings. Importantly, SNO-PINK1-mediated deficits in mitophagy contribute to neuronal cell death. These results reveal a direct molecular link between nitrosative stress, SNO-PINK1 formation, and mitophagic dysfunction that contributes to the pathogenesis of PD. Nitrosative stress and mitochondrial dysfunction represent key pathological events in Parkinson's disease. Oh et al. identify a molecular link between these events in which increased nitric oxide (NO)-related species S-nitrosylate a critical thiol group in PINK1, thus compromising its ability to eliminate damaged mitochondria via mitophagy.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 NS086890)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant P01 ES016738)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1 DA041722)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant RF1 AG057409)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01 AG056259)en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELREP.2017.10.068en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleS-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson’s Disease Modelsen_US
dc.typeArticleen_US
dc.identifier.citationOh, Chang-Ki et al. “S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson’s Disease Models.” Cell Reports 21, 8 (November 2017): 2171–2182 © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorJaenisch, Rudolf
dc.relation.journalCell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-08-24T14:12:26Z
dspace.orderedauthorsOh, Chang-Ki; Sultan, Abdullah; Platzer, Joseph; Dolatabadi, Nima; Soldner, Frank; McClatchy, Daniel B.; Diedrich, Jolene K.; Yates, John R.; Ambasudhan, Rajesh; Nakamura, Tomohiro; Jaenisch, Rudolf; Lipton, Stuart A.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record